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Introduction and Background 

Five years ago I became Coordinator of our School of Visual Arts freshmen level Core Design 
Program. Until that time, I had been teaching senior undergraduate and graduate level students in our 
sculpture program. Suddenly, I was surrounded by freshmen and I experienced an awakening to a new 
generation of "screenagers"[l]. Coincidental to my assuming responsibility for the design program, my 
colleagues and I came to a consensus about instituting a new instructional format to ensure greater 
continuity in the presentation of the program. This format now consists of one hour per week of lecture 
on the elements and principles of design and four hours per week of laboratory application of those 
elements and principles. As program coordinator I present the weekly lectures in a large class and 
supervise 20 graduate teaching-assistants who teach the labs under my immediate direction. Our program 
is large and averages 350 to 400 design students per semester. During any given semester, approximately 
half of those students are involved with three-dimensional design issues. 

In my mind the implementation of the new lecture/lab format called for a review of the entire 
design curriculum. I wanted to examine the nature of student questions about the validity of continuing 
to teach the program according to the old teaching model, which promoted a high degree of diversity 
from one lab section to another. Times have changed and so have methodologies in education. 

Throughout the history of my own development as an artist, I have maintained a close link with 
mathematics and the physical sciences. Had I not taken the path of art I would have pursued a career in 
the sciences. Consequently, I have always looked to mathematics and the sciences for inspiration to do 
my own work. The same semester I took over the core design program I implemented a new graduate 
level experimental course in Art and Mathematics. I collaborated with one of my colleagues in the 
mathematics department, a fractal geometer. I invited specific students, whom I perceived to share my 
interest in mathematics and the sciences, to participate in this first course offering. The enthusiasm 
generated by this course was overwhelming. Word of it filtered down into the undergraduate program 
even to the freshmen level design students. To my amazement I was approached by students of all levels 
and asked when I would offer such a course again. Prior to that, my experience of trying to mix art 
students with mathematics was like trying to mix oil with water. What does mathematics have to do with 
art? The fact of the matter is that mathematics has a lot to do with art, more than traditional art students 
have ever imagined. Artists unconsciously utilize mathematical concepts and apply practical 
mathematical algorithms on a regular basis in the process of their art making. To my knowledge 
traditional pedagogy in the arts has never emphasized the role of mathematical thinking in art making. 
For my students and me the time had arrived. 
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Mission and Methodology 

In my opinion one ofthe primary objectives of a good foundations of art program should be the 
meaningful integration of mathematical thinking into the curriculum. In an age of computer technology 
such integration is essential to the education of a well-rounded art major. Many of our art programs have 
been taken over by the introduction oftechnology. Almost anyone can learn to operate a graphics 
software program without benefit of knowing the underlying mathematical concepts or mathematically 
related operations ofthe computer; My motivation for advocating mathematical thinking in three­
dimensional design, however, is much more fundamental; it stems from my thesis that the most effective 
way to teach the elements and principles of design is from a historical context. By providing students 
with a historical narrative back drop for the introduction of certain design project activities, which seem 
to have no practical value, students are inherently less inclined to question the validity of such projects 
and are willing to participate without resistance. My methodology then is to build a sound three­
dimensional course of study based on the history of mathematics and illustrate its relationship to the 
development of design thinking. 

Due to the limits of time and space I will not be able to lead the reader through an entire 
semester of this methodology. I will, however, present the first few phases ofthis mathematical approach 
to design. Assuming that we can all agree that the elements of design are line, shape, space, texture, 
value, and color and that the principles of design are harmony, variety, balance, proportion, dominance, 
movement, and economy [2], I can proceed through phase one of this mathematical methodology, which 
I call shape exercises. Whether working in two or three dimensions we find that line is found in nature 
either as a contour or a cross contour of some object, which has mass and/or volume. In two-dimensional 
art line can exist by itself as a mark on a piece of paper or it can be drawn back onto itself and create 
shape. Shapes are the fundamental building blocks of design. They are found everywhere we look in 
nature, science, and art. The history of Eastern as well as Western culture (via Euclidean Geometry) has 
imprinted upon our minds certain fundamental shapes from which all other shapes (at least in our human 
manner of description) are derived. When we make art we tend to idealize somewhat the shapes we use 
and we derive invented shapes from a combination of these idealized shapes. These shapes are basically 
the circle, the triangle, and the square (or rectangle). These are regular polygons and can be extended into 
other more complex polygons such as the pentagon, hexagon, octagon etc. Where did these shapes come 
from? They are and were fabrications or patterns of the mind. The Greek Philosopher and 
Mathematician, Euclid (circa 300BC) collected and organized many ofthe previously illustrated 
geometric ideas about shape and space that had been created since the time of his distant predecessor, 
Thales (640-S46BC). This was an enormous task and eventually he compiled all of this information into 
a logical, mathematical system, which became known as Euclidean Geometry. He formally arranged his 
collection of information into a book, entitled, The Elements. Euclid was a purist. He insisted that the 
only way to create these regular shapes was from a most naive and fundamental method which did not 
depend on any a priori knowledge except that which was self evident such as the first five postulates of 
his geometry book, The Elements [3]. Those postulates are: 

1. It is possible to draw a straight line from any to any point. 
2. It is possible to produce a fmite straight line continuously in a straight line. 
3. It is possible to describe a circle with any center and radius. 
4. All right angles are equal toone another. 
5. If a straight line falling on two straight lines makes the interior angles on the same 

side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which 
are the angles less that the two right angles. 

As it turns out the fifth postulate was not so self-evident and eventually gave rise to what we call 
non-Euclidean Geometry. In any event, for Euclid and his followers and for our design students, the 
process of creating shapes or polygons was and is to be one of self discovery based on nothing but the 
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five postulates as a starting point. To this end Euclid restricted himself and others, as we do our students, 
to the solitary use of compass and straight edge, the simplest and most immediate of tools, for the 
invention of regular polygons. 

Because of the work of Euclid and subsequent geometers, we fmd the history of geometry 
labeled as either Euclidean or non-Euclidean. The preoccupation of the many aspects of'shape in the 
history of geometry as well as in other aspects of the overall history of mathematics has lead 
contemporary mathematicians to more accurately describe mathematics itself as a science of patterns [4]. 
If we think about it, we could call design a science of patterns. At the very least, design is the mental 
fabrication of an idealistic picture of the world revealed through the presentation of patterns either two 
dimensionally or three dimensionally. And herein lies a major problem. Art (design) has often been 
called "an imitation of nature." But we know that nature does not reveal itself to us in regular shapes or 
polygons, as Euclid would have it. Nature is anything but regular or predictable. So we ask ourselves, 
"Where in nature do we fmd, for example, a perfect sphere, an equilateral triangle, or a cube?" No 
where! Appearing to be chaotic, nature seems to defy geometry, at least Euclidean geometry. 

With this as background, students are asked to begin l;l journey of exploration into the ideal world 
of Euclid and create regular polygons (circle, triangle, square, pentagon, hexagon and octagon) with only 
compass and straight edge. Furthermore, students are asked to write the algorithm for creation of each 
polygon and be able to visually prove its veracity before the other members of the class. The most 
difficult polygon to achieve with only compass and straight edge is the pentagon. Perhaps one or two out 
of every twenty students is able to achieve this five-sided polygon without outside help. The student 
response to this first phase of retracing history and rediscovering the origins of the shape has been 
overwhelming and positive. 

Phase two of this journey of mathematical exploration into the elements and principles of design 
consists of what I call spatial exercises. In order to work successfully in the third dimension we must 
fme-tune our perception of that dimension. In art we have traditionally started our investigations of 
images on a two dimensional surface with height and width as descriptors. As our personal and cultural 
experience broadens and we become more visually sophisticated, we begin to create illusions of the third 
dimension on the two dimensional surface by attempting to depict the dimension of depth. This illusion 
is made believable to ourselves and our viewers by the joining of simple two dimensional shapes 
according to the laws of linear perspective which were first explored over 600 year ago by such artists as 
Da Vinci and Durer. Though the fundamental ideas of perspective were discovered in the fifteenth 
century, and gradually came to pervade the world of two-dimensional art, it was not until the eighteenth 
century that projective geometry was studied as a mathematical discipline. If Euclidean geometry 
corresponds to our mental conception of the world around us, projective geometry captures some of the 
patterns that enable us to see the world the way we do two-dimensional images on our retinas.:. The basic 
idea of projective geometry is to study those figures or patterns, and those properties of figures or 
patterns that are left unchanged by projection [5]. 

The next step in phase two is to make the transformation from the illusionary two­
dimensional world to the reality of the three-dimensional world. Students do this by taking a shape or 
polyhedron such as a cube or pyramid from a drawing and then making it into an actual three 
dimensional reality. This task is accomplished by mentally dissecting the rendered cube, or pyramids etc. 
and flattening out the shape into a pattern ·or net, as it is called. After adding tabs and flaps the net is cut 
out and assembled into a totally, enclosed, three-dimensional Euclidean object or module. 

Now that we have made the transition from the ideal two-dimensional world of Euclidean shapes 
or regular polygons and successfully created three dimensional renditions or polyhedra, we are ready to 
come face to face with the real world of nature and see where Euclid's idealization has failed us. One 
reason lies in the fact that Euclidean geometry cannot describe the shape of a cloud, a mountain, a 
coastline, or a tree. "Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark 
is not smooth, nor does lighting travel in a straight line" [6]. More generally, we can see that many of 
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the patterns of nature are so irregular and fragmented that they cannot conform to Euclid's vision of the 
world at all. Nature truly exhibits an altogether different level of complexity. The number of distinct 
scales of length and dimension of natural patterns is for all practical purposes infinite. The existence of 
these patterns challenges us to study those forms or shapes that Euclid leaves aside as "being formless," 
to investigate the morphology of the "amorphous." For several hundred years mathematicians have . 
disdained this challenge and have increasingly chosen to flee from nature by devising theories unrelated 
to anything we can see or feel. Twentieth century artists, on the other hand, have attempted to deal with 
these patterns of nature through abstract art, but until now have lacked an adequate scientific vocabulary. 
Responding to this challenge, from a scientific and mathematical perspective, the contemporary 
mathematician, Benoit Mandelbrot (b. 1924), conceived and developed a new geometry of nature and 
implemented its use in a number of diverse fields including art. This geometry describes many of the 
irregular and fragmented patterns around us, and leads to full-fledged theories, by identifying a family of 
shapes called fractals [7]. 

Fractals are qualitative; a measure of the relative degree of complexity of an object as opposed 
to quantitative as in the measuring of length or width. Infinite detail, infmite length, and fractional 
dimension characterize fractals. Fractals exhibit self-similarity and they can be produced by iteration 
(feedback involving the continual absorption or enfolding of what has come before). Fractal shapes of 
great complexity can be obtained merely by repeating a simple geometric transformation wherein small 
changes in parameters of that transformation can provoke global changes. That is to say, when a random 
variation in mathematical iterations is allowed so that details vary from scale to scale, it is possible to 
mimic the actual forms and structures of nature much more closely. Fundamental to the study of fractals 
is the concept of self-similarity, which means a repetition of detail at descending scales. How could 
something that measures thousands of light years across have anything in common with objects that can 
be hand held? Could it be those similar mathematical laws and principles of growth are operating at such 
different scales? If this is true, Mandelbrot realized, then these laws must have little to do with classical 
Euclidean geometry, where scale is a notion so obvious that it is oflittle or no importance. Could one 
create a measure of irregularity that was based on scales? Scaling here implies that nature's shapes CaJ) 

exhibit irregularities and/or fragmentation that is identical at all scales. A simple and ordinary example 
of fractals wherein self-similarity and scaling are at work would be a living tree where branches have 
smaller branches (bifurcation) with details being repeated down to the dimension oftiny twigs [8]. 

Mandelbrot's central concept, which gives his book its title, The Fractal Geometry of Nature, is 
that the notion of three simple dimensions is a myth. Real-world objects occupy a space whose 
dimensions are fractional or fractal (from fractua- irregular and frangere- to break into irregular 
fragments). One kind of less than three-dimensional object may have 1.25 or 2.65 dimensions more or 
less etc. Dimensions of one, two, and three are theoretically possible but abnormal. (Example: sheet of 
paper-2D, crumpled to a ball-3D, unfolded but wrinkled-2.5D) 

With the above as an introduction, phase three of my mathematical approach to design, invites 
the students to develop an original module, irregular (fractal) or if not, regular, and create a modular 
construction that exhibits self-similarity and scaling through a process of iteration. This approach has 
been well received from our students and has produced unusual and stimulating results on their part. 
Specifically, the objectives of phase three are: 

1) To examine at least three, three-dimensional forms in the world outside the mind and 
attempt to identify their fractal nature. 
2) To develop a single module that exhibits fractal characteristics. 
3) To construct one or more complex aggregates from the iteration of the single module 
that exhibits fractionalization, self-similarity, and scaling. 

During the balance of this mathematical approach to a three-dimensional design course of study, 
additional phases based on mathematical concepts are used to explore tectonic and atectonic shape/planar 
constructions as well as linear constructions of various mathematical configurations. All students in the 
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course are limited to the use of specific materials (which are predetermined) in the execution of their 
various projects and are required to discuss the mathematical origin of their constructions. The overall 
student response to this mathematical approach to the design process has been positive and rewarding. 

Historically, art students have avoided any contact with mathematics and the sciences; however, 
since our university has enacted a common core curriculum for all students, art students are now required 
to take mathematics and science as part of their general education. This fact has reinforced the use of 
mathematics in our art school and likewise has helped our students overcome their hesitation about 
mathematics and the sciences altogether, thus producing a more-well rounded artist. 
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