
BRIDGES
Mathematical Connections
in Art, Music, and Science

Harmony, Chromatics, and Chaos

Michael Field
Department of Mathematics

University of Houston
Houston, TX 77204-3476

E-mail: mf@uh.edu
URL: nothung.math. uh.edu;-mike/

Abstract

The aim of these notes is to provide an introduction to the idea of symmetric chaos and to some of
the questions that arise in using symmetric chaos in design. In particular, we discuss the problem of
symmetrically coloring designs, more especially repeating patterns with 2-color symmetries.

1. Introduction

Mathematics has long been intertwined with art - especially the fine arts - and design. This
relationship is most frequently seen through the use of concepts based on geometry, symmetry and,
more recently, topology. The use of symmetry and geometric proportion can give harmony and
unity to a design. Indeed, this is often the way in which the designer or artist conveys unity and
balance. This is seen in architectural design, or in the intricate repeating patterns of Islamic art,
or in the design of car wheels and modern textiles. In the music of Bach, symmetry and proportion
are woven into the fabric of the score. Sometimes the presence of symmetry and proportion can
be quite subtle. Thus, the works of Brent Collins attract our attention not only because of their
complex geometry and topology but also because of the local symmetries that are implicit in that
geometry. In general, our perceptions are strongly influenced by symmetry and proportion. When
we confront a complex image or metaphor, our first grasp at comprehension is often an attempt to
fit the subject within a symmetric framework.

Yet, geometry and symmetry have a static quality about them. We view the facets of a diamond
or crystal from ever changing positions but the diamond itself, its geometry and symmetry, remain
fixed in time and space. This emphasis on stasis is reminiscent of the medieval or classical view of
the world. The idea that the geometry of the solar system or universe is fixed and ever repeating is
seen in the classical Greek geometric models of the solar system and in Kepler's famous 1595 model
based on regular solids and spheres [5]; While our contemporary world view is still influenced by
these ideas, it has been profoundly changed by the Newtonian dynamic view of the universe. Instead
of static geometry and symmetry, everything is dynamic and changing, nothing sure or immutable
or exactly repeating - notwithstanding Nietzsche. Further, at the atomic level, quantum theory tells
us that we can know nothing with complete certainty. Paradoxically, the apparent certainty that
we perceive and feel, our very conscious self, may be but an average over the random fluctuations
and chaos that occur at the quantum level of matter [6].

In this paper, we describe an approach to art and design that is based on chaos, inexactitude
and symmetry. Like any system in art or music, there are constraints. But within those constraints

2 Michael Field

there is the possibility of inventiveness and originality.

_ The word 'harmony' in the title is intended to suggest the way in which the presence of symmetry
can unify and harmonize a design. However, the effective realization of 'images of symmetric chaos
depends on the use of color. As we shall show, the chromatics of chaos can lead to intriguing
questions, especially when we require that the underlying symmetries permute color in a consistent
way.

The images shown in this article were all generated using the software package prism, which
I started to develop over ten years ago after a visit to see Marty Golubitsky at the University
of Houston in 1988. At that time Marty Golubitsky, with Pascal Chossat (Nice), had described
the phenomenon of symmetry creation in dynamical systems as well as the creation of symmetric
designs in the plane by the iteration of planar polynomial maps [1]. Back in Sydney, Australia,
Jim Richardson wrote a first C-program that produced colored images of symmetric chaos. Sub­
sequently, I developed an interactive program to display various flavors of symmetric chaos on
workstations that ran on X-windows and a UNIX platform. In collaboration with Marty Golubit­
sky, a range of new algorithms were added including symmetric fractals and all of the 1- and 2-color
quilt patterns. Many colored images of symmetric chaos, as well as mathematical explanations,
can be found in the book Symmetry in Chaos [3].

The last two years, I have given an interdisciplinary course on "Patterns, designs and Sym­
metry" at the University of Houston that introduces Junior/Senior students in Art to ideas of
symmetry and design and the use of prism. Part of the course involves students learning famil­
iarity with some of the nuances of UNIX (IRIX) and Linuic. For some of the results, see the URL:
wotan. art. uh . edu. Many other colored images of symmetric chaos can be found at the URL:
nothung.math.uh.edu/-mike/.

As we are restricted in these notes to black and white images, we shall make occasional reference
to the URL: nothung. math. uh. edurmike/bridges. html for colored examples of 2-colored quilts,
We also refer the reader to the companion article 'Color symmetries in chaotic quilt patterns' [2],
where a more pictorial description is given of the effects that can be generated using some of our
2-coloring algorithms.

2. Algorithms for symmetric designs

In this section we describe some of the algorithms we use to generate (symmetric) patterns on
a computer. The algorithms we describe are based on ideas arising from the study of dynamical
systems and chaos - areas of mathematics that have their origins in the Newtonian dynamical
model of the solar system. While our methods for generating designs and coloring are firmly rooted
in mathematics, we shall avoid, as far as possible, getting entangled in the underlying mathematical
theory. (An elementary introduction, with references, can be found in [3].) Instead, we shall look
at the problem of pattern generation by asking how one might- actually draw a symmetric pattern
on a computer screen.

2.1. The computer screen and pixels. A modern high resolution computer monitor typically
has about 1000 lines, each line comprised of about 1200 small rectangles or squares called pixels. A
typical pixel would have edges of length approximately one quarter of a millimeter (that is, about

Harmony, Chromatics, and Chaos 3

one hundredth of an inch). Our monitor therefore has about 1,200,000 pixels. For the moment, we
shall assume that the monitor is 'black and white'. Later, we look at what happens when we have
a color monitor.

MagniflCalion of
small piece of line

x ~ Individual pixels

Figure 1: Drawing lines on the screen

By various electronic means, which need not concern us here, pixels can be switched on and
off. Our convention will be that if a pixel is 'on' it is black and so seen as a small black dot on
the screen. If the pixel is off, it is white. In particular, if all the pixels are off, the screen is white.
Turning pixels on puts small black dots on the screen. In this way, the process of turning pixels on
parallels drawing with a black pen on a white sheet of paper.

We draw on the screen by turning on pixels. For example, to draw a straight line, we turn on
pixels along a line. Provided the pixels are small enough what we see is a straight line. Viewed
more closely, the line may be rather jagged. See Figure 1, where we show a line and a portion of
the line magnified.

For our purposes, we are going to think of the computer screen as representing the plane. Points
in the plane will be represented by pixels. Of course, there are a lot more than a million points.in
the plane. Nevertheless, our assumption provides us with a good model to work with. In particular,
we can discuss turning pixels on and off rather than worrying about how to compute points in the
plane. If more 'points' are needed, we just imagine that our computer monitor is the very latest
model: Say with 1010 x 1010 = 1020 pixels.

As we shall be looking first at patterns that are bounded and have just rotational and reflectional
symmetries, it is useful to establish at the outset the convention that the center of rotation of our
pattern will always be the center of the computer screen. That is, the pixel (or point) situated
exactly in the middle of the screen.

2.2 Pixel Rules - Pixels Rule. We denote specific pixels on our screen by capital letters such
as P,Q,R,

What is a pixel rule? Basically, a rule R that assigns to any pixel P a new pixel, say Q. It is
probably easiest to think of a pixel rule as a 'black box' that takes pixels as input and has pixels
for output. See Figure 2.

4 Michael Field

Input
pixel

p--l>

Black Box

Output
pixel

Q

Figure 2: A 'Black box' pixel rule, with controls

Referring to Figure 2, notice that we have put some controls or 'dials', labeled a, b, c on the
top of the box. The implication here is that even though we may not know much, if anything,
about what goes on inside the box, nevertheless we may be able to affect the output by using the
controls ('turning the dials')1.

As we shall see, there are two basic types of pixel rule: Deterministic and non-deterministic.
In' a deterministic rule, a given input pixel P always leads to the same output pixel Q. In a
non-deterministic rule, the same input does not always lead to the same output. We explain this
dichotomy in the following examples.

Example 1. In Figure 3, we show how to construct a simple deterministic pixel rule. We fix a
pixel, say the center pixel C. Suppose the input pixel is P. The output pixel Q is obtained in the
following way. Draw a straight line from P to C. The output pixel Q will then be the midpoint of
the line PC.

Here it is easy to envisage some controls. For example, when we turn the control a, we could
move Q closer to C or away from C (depending on which way we turn the dial). On the other
hand, changing b might move the point C. 0

Example 2. Next we give a simple example of a non-deterministic pixel rule. Choose two distinct
pixels from the screen. Say A and B. Take an input pixel P. Toss a fair coin. If the coin falls
heads up, the output pixel will be A, otherwise it will be B. In this case, we never know with
certainty what the actual output pixel will be. All we will know is that it will be either A or B.
Even in this example, we can vary the controls a little. For example, turning the dial a might make
the 'coin' less fair so that it tends to fall heads up more often than tails. We could also vary the
pair of possible output pixels. For example, as we turn the dials, A and B might move along some
preassigned path, perhaps a straight line or along a circle. 0

In the previous example, there were two possible output pixels for each input. In general, we
want to allow for a finite set of outputs for each input. In these notes we assume that each output
is equally likely (though we can remove that restriction [3, p 187-189]). Before we give a more
elaborate example, we need to explain what we mean by 'equally likely'.

lOtherwise put, we want to hide the mathematics!

Harmony, Chromatics, and Chaos 5

c

---Output pixel

p Input pixel

Figure 3: A Deterministic pixel rule

-Imagine we have five tennis balls, all identical except that they are colored differently, say white,
black, red, blue and green. Put the five balls in a bag, shake the bag and pick a-ball out. What
is the chance that you pick green? Since all colors are equally likely, the chance is one in five or
'one fifth'. More formally, we say that the probability of picking the green ball out of the bag is ~.
What this means is that if we repeat the experiment a very large number of times then on roughly
one fifth of the occasions we will pick a green ball. We use the word 'roughly' here advisedly. In
fact if we did the experiment one million times, it would be extremely unlikely that the green ball
was picked exactly 200,000 times (one fifth of a million). However, it would be quite likely (and this
can be made precise) that the green ball was picked between (say) 195,000 and 205,000 thousand
times.

In what follows, we are going to imagine that inside our black box there is a cunning device that
can make choices with equal probability from a given collection of objects. A kind of 'universal lotto
machine' if you will. (Mathematicians or computer scientists would rather use the term 'random
number generator'. If you suspect that it is difficult to make sense of all this, you are probably
correct.)

Example 3. Our second example of a non-deterministic pixel rule is only a little more elaborate
than our first example. Yet, as we shall see later, the rule leads to a symmetric pattern of stunning
complexity. '

Referring to Figure 4, we now describe ~he 'Sierpinski rule'. Let b.ABC be an equilateral
triangle. Let P be the input pixel. Let R, S, T be the midpoint pixels of the lines joining P to A,
Band C respectively. We choose one of the pixels R, S, T with equal probability. That pixel will
then be the output pixel.

Thus, for the input P, the possible outputs will be R, Sand T. Each will be equally likely.
That is, the probability of getting the output T is one third. If we run the pixel rule a large number
of times with the same input P, then approximately one third of the outputs will be R, one third
S and one third T. The rule is non-deterministic because even when we know the input we can
never say with certainty what the output will be. All we can say is that there is a one third chance

6 Michael Field

a

Input pixel

that the output will be, say, S.

c~--------------------~b

Figure 4: The Sierpinski rule

2.3. Drawing using a pixel rule. Our goal now is to use pixel rules to draw images on the
computer screen. Here is the basic idea. Suppose we have a pixel rule. We start with an initial
pixel P - the seed. We suppose this pixel is on and indeed is the only pixel that is turned on.
Apply the rule to the pixel P to get a new pixel which we shall denote by PI (we use the '1' to
indicate that the pixel comes from one application of the rule.) Turn PIon. We have now two
points on the screen: P and Pl. Now we repeat the process, applying the rule to the pixel PI so
as to obtain a new 'on' pixel PJ. (so P2 results from two applications of the rule to the seed pixel
P. In thi~ way we obtain a string of 'on' pixels: P, PI, P2, In the sequel we often refer to the
points PI, P2, as iterates 01 P and the underlying process as iteration.

Simply put, we feed the output of our black box back into the· input and use this as a way to
draw points on the screen. In pra~tice we might apply the rule 50,000 times or more depending on
what kind of image the pixel rule produces.

Example 4. What happens if we carry out this process using the rule described in Example I?
We show the results~' Figure 5. Referring to the figure, we denote the seed pixel by P. We obtain
PI by taking the p' el midway between P and center C of the screen. Then P2 is obtained by
taking the pixel mid ay between H and the center and so on. In this way we obtain a line of dots
that rapidly becomes indistinguishable from C. To emphasize the latter point, suppose that P was
lOcm from the center C. Then PI is 5cm from C, P2 2.5cm from C and so on. If we work out
P20 (the result of applying the rule twenty times), we find that the distance between P20 and C is
about one ten thousandth of a millimeter and so the points P20 and C become indistinguishable. <;>

An important feature of the previous example is that the long term behavior may be relatively
independent of the seed pixel. Thus, for this example, we only see the limit pixel C in the long
term, whatever the seed pixel P. This phenomenon is characteristic of most of the rules we look
at, deterministic or non-deterministic. However, as we shall soon see, the long term behavior can
be much more complex than just a single limiting pixeL

Turning to the simple non-deterministic rule we described in Example 2, whatever seed pixel P

C~P4
P3

• --P2

P1

-----P

Harmony, Chromatics, and Chaos 7

Figure 5: Running a simple pixel rule

we use, we only see a pair of pixels A, B in the output. Unless, that is, we are very unlucky. For
example, if we run the rule 50,000 times it is possible that every single time the pixel A is chosen.
The chances that this might happen are rather small. About 1 in 3 followed by 15,000 zeros.

Our next example, based on the algorithm described in Example 3 gives a much more interesting
example of a non-deterministic pixel rule.

Example 5. In Figure 6 we show the result of running the Sierpinski rule 150,000 times. The
resulting image is usually called the Sierpinski triangle. Note that we have not plotted the seed,
or indeed the first 1,000 iterates' of the rule.

There are some quit~ remarkable features about the Sierpinski rule.
The image we see is independent of the seed. That is, whatever seed we choose we always get

the same final image.
The image, even though generated by a 'coin-tossing' procedure, is very regular. It has 3-fold

reflectional symmetry and has the same structure on all scales.
The image is very complex: A non-deterministic process can lead to very definite, though

complex, structure. <V

Figure 6: The Sierpinski triangle

8 Michael Field

Rotation of X one quarter turn about C

c·

x /
(~---·--=)-+-T

Translation of X along T

Reflection of X in T Glide reflection of X, glide line T

Figure 7: Planar·symmetries

3. Planar symmetry

In this section, we give a very brief review of the concept of symmetry and describe the various
types of symmetry that occur for bounded planar figures. In later sections, we look at unbounded
repeating patterns.

3.1. Symmetry. There are several possible approaches to defining the concept of symmetry. We
shall adopt an operational approach and define symmetry in terms of transformations that leave
the object unchanged. Roughly speaking, we say that an object has a nontrivial symmetry if we
can move it around in space and put it back in its original position but with a different orientation.
Suppose that X is a planar figure. Then X can have precisely four types of symmetry.

• Rotational symmetry: X remains unchanged after rotation about some point C in the plane.
(C is called the center of rotation.)

• Reflectional symmetry: X remains unchanged after reflection through a line L in the plane.
(L is called a line of symmetry.)

• Translational symmetry: X remains unchanged when we slide parallel to a line T in the plane.
(T is called an axis of tqmslation.)

\

• Glide reflection symmetry: X remains unchanged under a translation followed by a reflection.
(The axis of translation is called a glide line. Neither the reflection nor the translation should
be a symmetry of X.)

We illustrate the operations of rotation, reflection, translation and glide reflection in Figure 7.
In Figure 8 we show a strip pattern that exhibits all four types of symmetry (rotational symmetries
are through a half turn).

It is convenient to regard the operation of 'doing nothing' as a symmetry: The trivial symmetry,
I. With this convention, any combination of rotations, reflections, translations and glide reflections
is either the trivial symmetry or a rotation, reflection, translation or glide reflection. For example,
if we reflect twice in the same line, we obtain the trivial symmetry. On the other hand, the result

Harmony, Chromatics, and Chaos 9

Figure 8: Strip pattern of type pma2 which exhibits all four types of symmetry

of successive reflection in three lines which are not parallel and contain no common point, is a glide
reflection (see [7, Appendix I] for justification).

If X is a planar figure then the symmetry set or symmetry group §(X) of X is the collection of
all symmetries of X (including the trivial symmetry).

Remark Any composition of symmetries of X is a symmetry of X. If S is a symmetry of X then
there is a symmetry S* of X such that the result of composing the symmetries Sand S* is ~he
trivial symmetry of X. <>

3.2 Symmetries of bounded figures. Suppose that X is a bounded figure in the plane. It can

(a) (b)

Figure 9: Rotational and reflectional symmetry

be shown that symmetries of X are either rotations or reflections. In Figure 9 we show examples of
designs with 4-fold rotational and reflectional symmetries. Figure 9(a) has exactly four symmetries:
The trivial symmetry I, rotation through one quarter of a turn about the center, and rotations
about one half and three quarters of a turn about the center. (We denote these symmetries by Rl,

4

Rl and R~ respectively.)
2 4

Figure 9(b) has a total of eight symmetries. In addition to four rotational symmetries there are
four reflectional lines of symmetry (the horizontal, vertical and diagonal lines through the center

10 Michael Field

of the figure). We say that Figure 9(b) has 4-fold reflectional symmetry.

We may similarly define n-fold rotational and reflectional symmetry for any integer n ~ 2. Note
that I-fold reflectional symmetry is just bilateral symmetry.

4. Symmetric pixel rules

In this section, we consider conditions that we can impose on a pixel rule so that it generates
a symmetric image.

4.1 Symmetric deterministic pixel rules. What are the properties we might reasonably impose
on a deterministic algorithm in order that it might generate an image with a given rotational or
reflectional symmetry? In order that the image generated by the algorithm be symmetric, it is

(reasonable to ask that the algorithm itself be 'symmetric'.

For example, suppose we want a deterministic algorithm to generate an image with 4-fold
rotational symmetric (for example, the image shown in Figure 9(a)). The symmetries we want the
image to have are the quarter turn symmetries Rl, Rl, R!, together with the trivial symmetry I.

4· 2 4

Suppose that P is the initial input pixel and Q is the output pixel determined by our algorithm.
Instead of P, we might have taken pI = 8(P), where 8 is one of the symmetries Rl, Rl, R!. For

424
example, if we take 8 = Rl, then pI is the point P rotated through a one half turn. Let Q' be the

2

output pixel corresponding to P'. It is reasonable to ask how Q' might be related to Q. Without
further conditions on our algorithm, there need be no relationship between Q' and Q. We shall say
that our algorithm is symmetric (strictly, has 4-fold rotational symmetry) if Q' = 8(Q). What this
means is that once we know what our algorithm ~oes to a pixel P, we know what it does to the
symmetric images of P. If we denote our algorithm by A and write A(P) to denote the effect of A
on P, then the symmetry of A implies that

A(8(P)) = 8A(P),

for all pixels P and symmetries $.

It can be shown that this condition on the algorithm is necessary for it to produce a symmetric
image.

Example 6. Suppose that the pixel rule says: Rotate through one quarter of a turn about the
center of the screen. If we take as input the pixel P and repeatedly apply the rule, we get four
pixels P, Rl (P), Rl (P), R! (P). Obviously this algorithm has 4-fold rotational symmetry as does

424
the set of pixels that is drawn on the screen. c;.>

The image plotted in the previous example depends on the initial pixel. If we change the initial
pixel then the resulting set of pixels drawn on the screen will correspondingly change.

We shall require that our deterministic algorithm possesses the property that the resulting pixel
image is essentially independent of the initial pixel. It is quite remarkable that such rules exist

Harmony, Chromatics, and Chaos 11

- and even more remarkable that to get an interesting image, the rule basically has to generate
'chaotic dynamics'.

Example 1. In Figure 10, we show the result of plotting just a few points using an algorithm with

.

"0;,

(a)

,.
'.:

" .:::: :- .. ,-
. ' . . .' ~ .- " . . .

" :

. '.
.-. :

. ":\''':' ! : .
" . ',. "

" : .

(b)

.... . ,
.' ,

. .
. ' "

." .~'::.. " : .. :.~
.';' ". ',:: : '': .. : ... '.:

• ~" ::~. #> I' :'. " .,-:
.,. . :," ~'. ... " " .:.;

.. 0".

: " .. '. ~ . " . .
':::

-r • • i:.. .. ··: ' .. : •. : .. : : :.;>'"
'., -...... ::' .

(e)

'. : '~; .. : \.': ;l.~,.
.. '

.' :',' ..
' ..

Figure 10: Plotting small numbers of points

5-fold rotational symmetry. Both rows of three images in Figure 10 were obtained in the following
way. Starting with the same initial point, the first 20 iterates were computed, but not drawn on
the screen. In (a), the next 50 points are plotted, in (b) we plot another 150 points and in (c)
another 150 points. (Notice that every pixel hit in (a) also appears in (0) and (c).) In the first
image, what one sees is a point that appears to move randomly and there is no evidence of any
detailed structure. In (b) it appears that the point moves about on a disk shaped region and in
(c), although there is some evidence of structure, about the best one can say is that pixels near the
center appear not to be hit. The second row is computed using a different initial point from the
first row. Although different pixels are hit, the images (b) and (c) are qualitatively the same. In
fact, the initial points for the two sequences of pictures only differ in their x-coordinate and then
only by 0.00001. Notice that although the initial points are very close, the two images shown in
column (a) are quite different. This 'sensitive dependence on initial conditions' (aka the 'butterfly
effect') is characteristic of the deterministic algorithms that lead to designs showing rich structure.
Finally, notice that even though the algorithm we use has 5-fold rotational symmetry, the images
we draw are hardly even approximately 5-fold symmetric. <:?

While the images we show in Figure 10 depend both on the initial pixel and the number of
points plotted, it is a remarkable fact that if we plot a large number of pixels then the resulting
image is apparently independent of the initial pixel. Moreover, the image may be both symmetric
and possess detailed and intricate structure. In Figure 11, we show the result of plQtting 100,000
points using the same algorithm used in Figure 10. Observe that this image apparently has 5-
fold rotational symmetry. Very close examination of the dots in the image reveals that the 5-fold
symmetry is only approximate though it is close to being exact. Experimentation shows that the
more points we plot, the closer we apparently get to exact 5-fold rotational symmetry. Moreover,

12 Michael Field

Figure 11: Thorns - a symmetric icon with 5-fold rotational symmetry

we also find that the resulting image is apparently independent of the initial pixeL· Again, this
independence is approximate, though close to exact. We call bounded symmetric images produced
in this way Symmetric Icons [3].

What we see here is that if we plot just a few points with this algorithm then the resulting image
possesses little or no structure and is highly dependent on the initial pixeL However, if we plot a
large number of points then we get a well defined image which is, to a high order of approximation,
independent of the initial pixeL To make sense of this apparent contradiction, it helps to view the
process of drawing the image as a dynamic process. That is, the image is not drawn at one instant
of time but is drawn pixel-by-pixel over a period of time. The dynamic process associated with
plotting the points is chaotic - that is, depends sensitively on the initial pixeL What we see in
the long-term is the (Lverage behavior of the dynamic process. That is, even though the process is
chaotic, it is possible for it to have structure on average. Looking again at Figure 11, we see that
some areas of the image are darker than others. The darkness of the image, or density of the dots,
is a measure of the amount of time spent in that region. Areas sparsely populated by dots, will be
infrequently visited as we iterate our algorithm. Densely populated areas are frequently visited. In
a later section, we explain how we can use color to show fine structure in the image.

4.2. Symmetric non-deterministic pixel rules. Perhaps surprisingly, it is rather easy to
describe a large class of symmetric non-deterministic pixel rules. Specifically, suppose we want to
construct a non-deterministic algorithm A that produces an image I with a specific symmetry group
§. For simplicity, assume that I is bounded and that § consists of just rotations and reflections. A
natural condition to impose is that for every pixel input P, the set of possible outputs Ql, .. . , QN
has symmetry group §. In particular, the elements of § will permute the points Ql, ... , QN. Here
is a practical way to implement a rule with this property. Let n be a deterministic pixel rule that
leads for almost all initial pixels to the same bounded image - for example, the center C of the

(a)

.. . .

Harmony, Chromatics, and Chaos 13

(b)

Figure 12: Symmetric Fractal with 10-fold reflectional symmetry

screen. We now describe a non-deterministic algorithm A associated to the rule R. If P is the
input pixel, let T = R(P) denote the output pixel determined by R. Randomly choose a symmetry
S from § and define the output A(P) to be S(T).

For example, suppose that § was the group of rotations through multiples of one tenth of a
whole turn about C. Pick P, apply R to get T and then make a rotation of T about C of some
random multiple of one tenth of a whole turn.

It can be shown that in many cases iterating this procedure will lead to a bounded image
with symmetry group §. Images produced in this way are called Symmetric Fractals in [3]. This
method can also be used to produce quilt patterns and indeed the strip pattern shown in Figure 8
was produced using a non-deterministic algorithm of this type. In Figure 12 we show two fractal
images computed using the same algorithm. The left hand image was computed using just 100
points. For the second image we computed 250,000 iterates. (Note that the dots in the first image
are drawn about 10 times normal size to enhance their visibility.)

5. Using color to illuminate chaos

Already in our black and white images of Symmetric Icons and Fractals, we have seen how
both deterministic and non-deterministic symmetric algorithms can lead
to images which contain fine structure and are quite non-uniform. If we
take the algorithm that produced Thorns (Figure 11) but plot a larger
number of points, we find that we lose detail. In the figure on the right,
we show the result of computing 50,000,000 iterates. Clearly, there is a
point when plotting more iterates loses rather than gains detail. Recall,
that our hypothetical monitor screen has 1,200,000 pixels. Consequently,
if we attempt to plot more than 1,200,000 points, some of the pixels on
the screen will be hit more than once. In practice, for images like Thorns,
we find that when we plot a large number of iterates, many pixels are hit
infrequently (or not at all) while some pixels are hit very many times. Typically those pixels that

14 Miellael Fiekl

are hit many times appear as lines or other fine structure in the image. The way we can bring out
the detailed structure of the image is to use color. Roughly speaking, we 'color by number'. More
precisely, a pixel is colored according to the number of times it was hit in the iteration. The color
of a pixel represents the frequency with which it is hit during the iteration. From the mathematical
point of view, we may think of the coloring as a 'colored measure'. When we compute a large
number of iterates, we find that the coloring of the image (or the colored measure) has the same
symmetry as the image. Many examples of colored images produced using prism can be found in
the book Symmetry in Chaos [3]. Other colored images, including Thorns, may be found at the
URL: nothung.math.uh.edu/-mike/Art/Art.html.

5.1. Chromatics of Symmetric Icons and Fractals. Aside from their symmetry, Icons
and Fractals are quite different in their appearance and texture. Icons typically exhibit intricate
structure and fine detail. The detail manifests itself in the forms of curves, often ending in cusps.
While the fine detail is what leads to the attractiveness of the design of the Icon, this detail often
only occupies 1-2% of the area of the Icon. Much of the rest of the Icon contains regions with
little or no detailed structure. These regions allow for shading effects. In brief, Icons emphasize
'edge data' rather than texture. On the other hand, Fractals typically display a wealth of textural
information but little in the way of fine detail. This difference between Icons and Fractals is also
shown in the statistics of pixel hits when we iterate to produce an image. For example, if we do
20,000,000 iterations to construct an Icon and a Fractal for the same size screen, we usually find
that the range of pixel hits for the Fractal goes from 0 to maybe 1,000 while the range for the Icon
might vary from 0 to 50,000 or mOre. Pixels that record a high number of hits show as lines in the
image of an Icon. Thus the approach to coloring Icons and Fractals is rather different. For Icons,
we choose colors so as to show fine detail and balance this with careful shading of colors over the
remainder of the attractor. For Fractals, most of the effort goes into showing textures to good effect.
Finally, we remark that even though the colored image appears highly symmetric, examination of
symmetrically related pixels reveals that the symmetry of the coloring is only approximate. Again,
this is just a reflection of the fact that the underlying dynamics is chaotic and that what we see is
a representation of average behavior.

Remark The coloring schemes used for Symmetric Icons and Fractals and those used to color, for
example, the Mandelbrot set are quite different. For the Mandelbrot set, colors are chosen on the
basis of 'escape times'. The corresponding boundaries between different colors are characteristically
sharp. Modifications of,the coloring algorithms lead to smooth and gradual variations in color -
effects that cannot be easily realized with Symmetric Icons and are unattainable with Symmetric
Fractals. 0

6. Quilt patterns

So far in these notes we have focused on bounded symmetric patterns in the plane. In this
section, we give a brief discussion of unbounded symmetric patterns in the plane, also known as
'wallpaper' or 'quilt' patterns. Throughout, we shall use the term quilt pattern to be synony­
mous with two dimensional repeating pattern. It is possible to give a symmetry classification of
two-dimensional repeating patterns. In this classification, there are exactly seventeen basic quilt
patterns. Each of these basic patterns is characterized by their rotational, reflectional and glide
reflection symmetries. We refer the reader to Washburn & Crowe [7] for a detailed description of

HarlROllY, Chromatics, aM Chaos 15

Figure 13: Four quilt patterns

the seventeen quilt patterns together with algorithms that enable one to identify the symmetry
type of a given pattern.

Sometimes it is not so easy to identify the symmetry type of a quilt pattern. In Figure 13,
we show four quilts generated using prism. In this figure, four distinct symmetry types appear:
pmg, pg, pgg andp4g, where we follow the notational conventions of [7]. All four quilts have
glide reflection symmetries.

Quilt patterns can be drawn using deterministic or non-deterministic algorithms. Designs for
quilts of type p4m, p4 (Square quilts) and p6m, p6 (Hexagonal quilts) based on deterministic
algorithms may be found in [3]. The character of these quilts is similar to that of Symmetric Icons.
We have also developed a number of non-deterministic algorithms that generate all of the seventeen
wallpaper patterns. Some of these algorithms can produce designs that have a certain angularity,
even a cubist flavor. All of the designs in Figure 13 were produced with algorithms of this type2 . On
the other hand we have algorithms that yield designs intermediate in character between Symmetric
Icons and Fractals. These designs typically contain fine structure (curves and cusps) as well as
significant texture. We show four (black and white) examples of designs of this type in Figure 14.

2Note, however, that these examples were chosen so that most pixels were not hit in the iteration. We did this
simply because of our restriction to black and white images.

16 Michael Field

Figure 14: Quilt patterns of type pmm, p4m, p6, p3ml

1. 2-colorings of quilt patterns

For the remainder of this article, we focus on quilt patterns which admit 2-color symmetries.
To simplify our exposition, we will look at a model quilt pattern of type p4m. This symmetry is
the classic 'square tiling' pattern an example of which was shown in Figure 14. (We refer to [7] for
general details about the forty-six 2-color symmetric patterns.)

- .
In Figure 15 we show a single square tile which has a two color symmetry. Reflections in the

lines Q and P and rotations through a half turn about C preserve color, whereas reflections in
the lines Land M and one quarter and three quarter turns reverse colors. Notice that this tile
really has three colors: the two colors represented by the disks together with the background color
(white or transparent). The background color, however, is preserved by all symmetries of the tile.
If we tile the plane with these square tiles, placing them all with the same orientation, we obtain
a 2-color quilt Q of type p4'm'm [7, p 154].

We shall regard the design of an individual tile as consisting of the two black disks and the two
shaded disks. Let A denote the repeating pattern made from tiles containing just the two black
disks, and B denote the repeating pattern comprised of the shaded disks. If 8 is a symmetry of
the quilt Q then either 8(A) = A (8 is a symmetry of A), or 8(A) = B (8 is a color reversing
symmetry). In this way, we may think of a 2-color quilt Q as a combination of two sub-quilts, A

Harmony, Chromatics, and Chaos 17

p

___ +. __ .. _ .. ____ . ___ .. _________ .. _____ .• c ... ___ .. _____ ------.----.. ----.---+ .. -.. l

Figure 15: A square tile with 2-color symmetry

and B, such that every symmetry of Q either preserves A and B or interchanges A and B3.

Both A and B may be thought of as symmetrically related designs on a transparent (white)
background. From this perspective, we can start with a quilt A and the symmetries of the desired
2-colored quilt Q. 'Half' of these symmetries will preserve A. The remaining symmetries will
p~oduce the other half B of the 2-color quilt Q. If there is no overlap between A and B, then we
just assign different colors to the designs in A and B. But what do we do if there is overlap? See,
for example, the design shown in Figure 16 where we have chosen the shaded disks sufficiently large
so that they overlap with their symmetric images. One solution is just to introduce a third color
for the overlap. When we act by symmetries of Q this new color will then be preserved just as
happened for the background color. This coloring strategy leads to a minimum of four colors for a
typical 2-color quilt: One color for each of the sub-quilts, a color for the background and a color
for the overlap.

Figure 16: Overlapping designs

Symmetric Image
of base design

7.1. Algorithms for generating 2-color quilts Using methods depending on non-deterministic

3In our example, the individual (uncolored) quilts A, B are of type cmm.

18 Michael Field

algorithms, we can generate all of the forty-six 2-color quilts4. When we come to color these quilts,
a number of tricky questions arise. First of all, as we indicated above, every 2-color quilt Q can be
expressed as the union of two symmetrically related sub-quilts, A and B. Each pixel corresponding
to a point in either A or B will typically be hit multiple times in the iteration producing the quilt.
How do we color? One strategy is to color by symmetry.

7.2. Coloring by symmetry For each pixel P, let nA(P) be the number of times the pixel P
was hit in the iteration producing A. We similarly define nB(P). If nA(P) + nB(P) > 0, we define

Clearly, ° ::; A(P), B(P) ::; 1. If A(P) = 0, then the pixel Pis not hit in the iteration producing A,
while if A(P) = 1, then the pixel P is not hit in the iteration producing B. Where there is overlap
between A, B, we have ° < A(P), B(P) < 1. .

Now we can color Q in the following way. Choose two colors, say red and blue. Color P red if
A(P) = 1 and blue if A(P) = 0. On the overlap, we take the color of P to be

A(P) x red + B(P) x blue.

That is, we linearly interpolate colors between red and blue on the overlap. If we work in terms of
RGB values and take red to be (255,0,0) and blue to be (0,0,255), then the RGB value of P will
be given by

RGB(P) = (255A(P),0, 255B(P)),

rounded to the nearest integer RGB value. This coloring scheme results in a coloring of Q that
is consistent with the 2-color symmetries of the pattern. Of course, we can vary the interpolation
scheme as long as the interpolation is symmetric.

Examples of three different 2-colorings of the same underlying design - a quilt of type pmg -
may be found at the URL: nothung .matl1. uh. edurmike/bridges. html. (Figures 3, 4 and 5 show
symmetry based 2-colorings of types pm' g, pm' g' and pmg'.)

7.3. Coloring by symmetry and dynamics If we color a 2-color quilt Q solely by symmetry,
then we lose most of the detail that comes from the dynamics of the iteration. In particular, suppose
that Q is comprised of the two symmetrically related sub-quilts A, B and that A, B have no overlap.
If we color by symmetry alone, we only use two colors (together with the background color). In
this situation, where there is no overlap, the following approach would seem more naturaL Start
by choosing a coloring of A that takes account of the dynamics (that is, the relative frequency
of pixel hits). Symmetrically transform the colors used for A to a new set of colors for Band
color B using the same frequencies that we used for A. In this way, we obtain a 2-coloring using
many colors. We now have to take account of overlap. The 2-coloring algorithms that we have
developed color the overlap using coloring rules based on symmetry and dynamics. Examples of,
2-color fractal quilts colored using a relatively simple algorithm of this type may be found at URL:

4With the exception of p~l, examples of all of the 2-color quilts, generated using prism, may be found at the
URL: nothung.math.uh.edu/-mike/quilts/co12quilts/co12quilts.html.

Harmony, Chromatics, and Chaos 19

not hung . math. uh. edurmike/bridges . html. (Figures 8-10 are examples of 2-colorings of a quilt
of type pmg, and Figure 11 is a 2-coloring of a quilt of type cmm.)

7.4. Two-color algorithms We conclude by formalizing some of the characteristic properties
that a practical 2-color algorithm should satisfy. We denote RGB-space by M. One possibility is
to take M = {O, ... , 255P (the space of RGB-triples). Alternatively, we can use the continuous
model M = [0, 1]3. In what follows we adopt the continuous model on the grounds of mathematical
convenience and ignore (non-trivial) issues of translating values in [0,1]3 to TrueColor values or
PseudoColor color maps.

Let N+ denote the strictly positive integers. A permutation /'i, of {I, ... ,k} induces a transfor­
mation R : Mk-+Mk defined by R(a}, ... ,ak) = (ax;(l) , ... , ax;(k». We say that /'i, is an involution
if /'i,2 is the identity permutation. If /'i, is an involution then R2 is the identity map of Mk.

A k-parameter two-coloring algorithm consists of an involution /'i, of {I, ... ,k} together with a
transformation

C : N+ X Mk X [O,I]-+M,

such that for all n E N+, a = (aI, ... ,ak) E Mk and p E [0,1] we have

C(n, a,p) = C(n, R(a), I-p). (1)

In the sequel, we usually set C(n, a,p) = Ca(n,p}. In order to implement the algorithm C, we
make an initial choice of k colors a. = (al, ... , ak) and then colon pixels P according to the rule

Ca(nA{P) + nB(P), A{P»;

Notice that the data (nA(P) + nB(P), A(P» uniquely determines nA(P), nB{P), and B(P). Fix
a E Mk. We say that Ca is

1. Symmetrically non-degenerate ifCa{n,p) # Ca{n,p') if and only ifCa(n, I-p) # Ca(n, I-p'),
p,p' E [0,1], n E N+;

2. Dynamically non-degenerate if Ca(n,p) # Ca(m,p) if and only if Ca(n, I-p) # Ca(m, I-p),
p E [0,1], m,n E N+;

3. Strict if Ca(m,p) = Ca{n, q) if and only if m = n, p = q.

4. N -strict if whenever either of m, n is strictly less than N, then Ca (m, p) = C a (n, q) if and
only if m = n, p = q.

Roughly speaking, a coloring is symmetrically non-degenerate if the colorings of a pair of pixels
in A are distinct if and only if the colorings of their symmetric images in B are distinct.. Notice
that if a coloring is strict, then it is automatically symmetrically and dynamically non-degenerate.

We say that C is symmetrically non-degenerate if Ca is symmetrically non-degenerate for almost
all choices of a E Mk. That is, if Ca is generically symmetrically non-degenerate. We similarly
define dynamic non-degeneracy and strictness for C.

Example 9. Let aI, a2 E [0,1]3 be RGB-triples. Let /'i,(al' a2) = (a2' ad. Define Ca{n,p) = pal +
(1- p)a2' n E N+, p E [0,1]. This gives the coloring by symmetry discussed previously. This two­
coloring is symmetrically non-degenerate provided that al # a2. It is neither strict nor dynamically

20 Michael Field

non-degenerate. The same properties hold if instead we take Ca(n,p) = P2al + (1- p)2a2 . On the
other hand, the map Ca(n,p) = p2al + (1 - p)a2 is not a 2-parameter 2-coloring algorithm as it
does not satisfy (1). CV

We conclude by noting that there are many ways one can construct effective 2-color algorithms.
For examples of 2-color quilts colored using an algorithm that gives a painted effect, we refer to
the images 'Study in velvet' (Figure 12) at the URL: nothung.math.uh.edu;-mike/bridges.html
and 'Sydney Walls', at the URL: nothung.math.uh.edu/-mike/Art/Art .htmI.

References

[1] Pascal Chossat and Martin Golubitsky, Symmetry increasing bifurcations of chaotic attractors,
Physica D 32 (1988), 423-436.
[2] M J Field, Color Symmetries in Chaotic Quilt Patterns, to appear in Proc. ISAMA 99, San
Sebastian, Spain, 1999.
[3] M J Field and M Golubitsky, Symmetry in Chaos, Oxford University Press, November, 1992.
[4] Istvan Hargittai and Magdolna Hargittai, Symmetry, a unifying concept, Shelter Publications,
Inc., Bolinas, California, 1994.
[5] Johannes Kepler, Mysterium Cosmographicum, 1595 (See also [4, p 95] or [8]).
[6] Roger Penrose, The Emperor's New Mind, Oxford University Press, New York - Oxford, 1989.
[7] D Washburn and D Crowe. Symmetries of Culture, University of Washington Press, 1988.
[8] Hermann Weyl, Symmetry, Princeton University Press,cPrinceton, New Jersey, 1952.

