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Abstract 

 
In the absence of metal beams, domes had been an essential part of the architecture of official and religious buildings 

around the world for several centuries. Domes were used to bring the brick structure of the building to conclusion.  

Based on their spherical constructions, they provided strength to the building foundations and also made the structure 

more resistant against snow and wind.  Besides bringing a sense of strength and protection, the interior designs and 

decorations resemble sky, heaven, and what a person may expect to see beyond “seven skies.” Some contemporary 

religious buildings or memorials still incorporate domes, no longer out of necessity, but rather based on tradition or 

for esthetical purposes.  Yet the quality of the interior decoration of these new domes is diminishing.  The aim of this 

article is to study the spatial effects created by dome interior designs and to provide information about construction 

of such a design.  Decorations in dome interiors demonstrate art forms such as stucco, tessellated work, ceramics, 

paintings, mirror work, and brick pattern construction, as well as combinations of these forms. 

 

 

1. Introduction 

 
The decoration of dome interiors, in some cases similar to the decoration of pavement, windows, and 

walls, is closely related to geometrical properties of shapes, in both two- and three-dimensional space, 

known to artists several centuries ago. Based on existing domes, we cannot trace this art back beyond ten 

centuries, for there were many natural and social disasters that destroyed them.  However, we may be 

reasonably certain of a much earlier existence of such sophisticated designs of dome interiors based on 

references in earlier literature as well as the level of geometry available in those times. 

 

Mathematics had its crude beginnings, perhaps fifty centuries ago, in the civilizations of the Middle 

East.  For the Babylonians and the Egyptians it was a practical tool, essential in day-to-day living [1].  

Greeks, beginning with Thales of Miletus, established mathematics based on deductive reasoning rather 

than by trial and error.   Pythagoras and his disciples continued the systematization effort initiated by 

Thales over the next two centuries. Euclid, a disciple of the Platonic school, was the last in the chain of 

great mathematicians of classical Greeks that brought earlier efforts to axiomatize the geometry to 

conclusion in his 13-volume book, Elements.  Liking the challenge, the Greeks set very tight limits on 

which tools were permissible for construction, essentially utilizing the compass and straight edge.  With a 

few notable exceptions, almost all of the figures that were dealt with could be constructed using these 

two tools [2]. 

 

The works on geometry and geometrical constructions were translated and then collected later on in 

the Middle East somewhere between the seventh to the fourteenth century.  Scholars such as Persian 
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mathematician Al-khwarizmi, who was a member of the “House of Wisdom” in Baghdad in the early part 

of the eighth century, produced several manuscripts on arithmetic, algebra, and the use of Hindu 

numerals.  Their translations of Greek geometry and collections of the methods from Hindus and 

Hebrews helped preserve important knowledge for later study in the West [1].  The word “algorithm” is 

from the Latin translation of Al-khwarizmi and “Algebra” comes from the title of one of his books.  

Alhazen, another Middle-Eastern mathematician was the first to correct the understanding of seeing an 

object.  Greeks thought that to see an object, light from an eye goes to the object.  He correctly reversed 

this concept, providing the basis for the science of perspective [3]. His treatise on optics was translated 

into Latin in 1270 as Opticae thesaurus Alhazeni libri vii. 

 

The flourishing of geometry and geometrical designs and the challenge of using only compass and 

straight edge for creating intricate structures were in harmony with the beliefs of religious scholars of the 

Islamic empire that included North Africa, Spain, and a part of Eastern Europe and the Middle East.  

Based on their beliefs, artists were forbidden to represent people and living objects in their works, for 

these representations were perceived as idols replacing God.  During a trip to Spain in 1936, Escher 

visited the Alhambra, a structure by Moors from North Africa that had first intrigued him in 1922.  

Afterwards he remarked,  “This is the richest source of inspiration that I have ever struck…  What a pity 

it is that the religion of the Moors forbade them to make graven images!”  [4] 

 

Two points must be emphasized here.  First, even though the flourishing of tiling designs occurred 

during the Islamic Empire, this art is much older, as it was used in Babylonian constructions and 

handcrafts of the early Central Asian civilizations.  Second, the practice of using geometrical designs 

rather than idols could possibly be traced much earlier.  Herodotus, in the fifth century BC, wrote:  “It is 

not customary amongst Persians to have idols made and temples built and alters erected, they even 

consider the use of them a sign of folly [5].”  Herodotus’ quote referred to temples for idol worship.  

Zoroastrian temples of ancient Persian tradition have been uncovered and dated as early as 2000 BC by 

archeologists [5].  

 

 

2. The Art of Stucco 
 

Stucco is a typically Persian art form for the decoration of dome interiors.  In most cases it has 

accompanied the art of tessellation, ceramics, and mirror works.  The fine work of elaborately carved 

stucco has survived for centuries and can be found in cities including Esfahan, Mashhad, and Kashan in 

Iran. Examples of stucco dome interiors similar to the Persian style are also located in the western hemi-

sphere in the Alhambra in Granada, Spain.   

 

A circular dome was generally supported on a square base with various corner squinch designs.  The 

transition of interior designs from the building below to the dome above is achieved by constructions of 

several three dimensional shapes, such as wings of a star having the center as the center of the dome. In a 

stucco dome interior, the three-dimensional cuts as triangles, diamonds, or stars are designed in such a 

way that they have some corners toward the center.  This gives a feeling of attraction of all other points 

on the dome toward the center.  This reminds us of an attractor in a dynamical system -- a stable point 

that all states near it are attracted to.  Figure 1 is an example of a stucco dome interior.  The attractor of 

the design is inside a second dome.  This second dome is above several windows that are constructed 

around a cylinder.  In the summer, these windows allow a flow of air.  People of the past used to cover  
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Figure 1: Stucco dome 

interior with another dome 

at the center. 

Figure 2: Stucco dome interior 

in a private house in Kashan. 

these windows with bushes similar 

to tumbleweeds, compacted and 

drenched in water.  The hot and 

strong summer wind of cities close 

to deserts would remove the drops 

of water from the bushes.  This 

action takes energy and, as a result, 

a flow of cold air would come 

inside the building. It is worth 

mentioning that such a dome with a 

cooler system usually was built 

over the main room at the center, 

surrounded by smaller rooms 

containing smaller domes. 

     In some cases, the pattern in the 

dome interior reveals more than 

one attractor. For instance, figure 2 

shows a dome with four attractors 

surrounding the main one at the 

center.   

     Besides these five attractors, the 

dome has another twelve attractors 

in twelve holes with centers on the 

circumference of a circle larger 

than the circle that contains the 

center of four attractors. Figure 3 is 

a work of stucco that has been 

combined with the art of tiling.  It 

is the entrance portal of the Shah 

Mosque, Esfahan, built by Shah 

Abbas the Great between 1611 and 

1629. 
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Figure 3: Entrance portal of the 

Shah Mosque, Esfahan. 

     Figure 4 illustrates an example 

of a dome interior that uses the 

idea of attractors in combination 

with a brick pattern construction. 

 

3. Self-Similarity in Stucco 
 

Let us study the stucco dome 

interior design in figure 5 in 

detail.  The entire dome is an 

eight-winged star that has one 

attractor.  Its symmetries 

comprise the dihedral group of 

order 16, D8. This star has been 

divided into a second group of 

stars.  These are stars with 4, 5, 6, 

and 7 wings made from mirrors. 

The 7-winged stars, heptagrams, 

are irregullar, not all sides and 

angles are congruent.  The stars 

are connected with geometrical 

cuts that are surrounded with 

stars with sharper wings that are 

pointed toward the center. 
 

Figure 4: Brick pattern construction interior 

dome in Kashan. 

Figure 5: Mirror work stucco dome interior 
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Figure 6: Ali-Gholi Agha Mosque, 

Esfahan 

     In some cases, when the artist 

uses tiles instead of mirrors in order 

to cover the surface of each five-

winged star, we have another 

sequence of stars that resembles the 

entire dome as we can see in figures 

6 and 7 [6]. 

     In this stage, because of limitation 

on the size of each tile, the artist does 

not continue to produce the next series 

of smaller stars.  However, the idea of 

self-similarity [7] is evident.  We 

observe that the attractor of the five-

winged design is at the center of a ten-

winged star and it has the dihedral 

group of symmetries of order 10, D5.  
 

Figure 7: Kaseh Garan School, Esfahan 
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Figure 8: “Skeletal” design of the five-winged star. 

Figure 9 (a): Dividing a circle into five equal 

arcs. 

Figure 9 (b): Dividing a circle into ten equal arcs. 

     Figure 8 shows the design behind the work in the 

previous figure.  The design can be constructed using 

only a compass and straight edge.  To do this, the 

first step is to construct the surrounding five-winged 

star in the figure 8. 

 
 

    This star can be constructed by dividing a 

circle into ten equal arcs.  For this, we divide a 

circle into five arcs as it is illustrated in figure 9 

(a) and then divide each arc in half using a 

compass and straight edge.  We also may 

directly divide it into ten arcs as in figure 9 (b).  

     The second figure is from The ten books of 

architecture by Leon Battista Alberti published first 

at 1485.  It is worth mentioning that the larger part of 

the golden cut of the radius of a circle divides the 

circle into 10 equal arcs. There are examples in art 

illustrating the influence of the division of a circle 

into ten and five arcs on pages 90 and 91 in  [8].  
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Figure 10 shows a circle that is divided into ten equal arcs.  We connect the endpoint of one of these 

arcs, call the first point A, to the fourth endpoint D, clockwise, and continue.  We can then construct a 

3/10 star polygon.  Number 3 indicates the number of vertices skipped between each pair of connected 

vertices, while 10 is the total number of vertices.  Using this star polygon we can construct the five-

winged star that we needed. 

 

 

 

 
 

 

 

 

 

Now consider one of the five rhombi that construct this star, call it rhombus ABCD (in fact, only one 

fourth of this rhombus can create the entire star design by using reflective and rotational symmetries).  

We divide the obtuse angle into six equal angles and the acute angle into four.  To do this, if we look at 

figure 10, we notice that the acute angle, such as <A, is an inscribed angle opposite to arc DH, clockwise.  

This arc has been divided into four equal arcs DE, EF, FG, and GH.  Join A to these points and divide the 

acute angle to four equal angles.  The obtuse angle is equal to angle <IAC in figure 10.  This angle is 

opposite to arc CI, clockwise, which is divided into six equal arcs.  With the same procedure as for the 

acute angle, we can divide this angle into six equal angles.   

 

Let O be the intersection of two diagonals.  Two lines C-4 and B-3 meet at E.  We make an arc with 

the center of C and radius CE to find point F on DC.  From F, we draw a line that is parallel to C-5.  This 

line and D-1 meet at G.  From G we make a parallel to D-3 to meet CD on H and C-5 on Z.  We find L on 

CD such that DH = LC.  From H we make a line parallel to AC and from the intersection of this line we 

make a parallel line to A-1.  This gives us the quadrilateral with side HG. K is the midpoint of DC.  From 

K we make two parallels, one with AC and the other with B-3.  From L we make a line parallel to AC to 

Figure 10: Construction of a five-winged star with acute angle of 72 degrees. 
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meet C-5 on M and D-1 on N.  R is the intersection of LR that is parallel to B-3 and AC.  T is the 

intersection of C-4 and a line from N parallel to C-1.  The intersection of a line from L parallel to B-3 

and the line C-5 gives us a point.  S is the intersection of AC and the parallel line from this point to C-1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Division of the rhombus using a compass and straight edge. 

Figure 12: Dome interior of the Marble Place 

Tehran. 

4. Rosette Dome Interiors 

 

The following figure shows the interior of the 

dome of the Marble Palace in Tehran.  The dome 

is closely modeled on the Sheik Lotfolah mosque 

in Esfahan, built by Shah Abbas early in the 

seventeenth century.  
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5.  Missing Regular Heptagon 

Figure 13: Rosette design of sixteen circles. 

     The circular rosette pattern is created based on 

the arrangement of overlapping circles.  Sixteen 

congruent circles, called radial circles, are arranged 

so that they have a point in common.  Therefore, 

the centers of each radial circle lie on a circle, 

called the Centrum ring, which is itself congruent 

with any of the radial circles.  The common point is 

the center of the Centrum ring.  The outer circle, 

which is concentric with the Centrum ring and 

whose radius is equal to the diameter of the radial 

circles, is the reference circle.   
 

Figure 14: A dome interior design and its construction based on the division of the circle into 

sixteen parts. 

       Changing the number of radial circles or increasing the diameter of the radial circles with respect to 

the radius of the reference circle, produces different rosettes that have been studied and illustrated in  

[9]. Figures 14 (a) and (b) present the design of another dome interior based on the division of a circle 

into 16. 

The designs for dome interiors, and other designs for walls and pavements, were constructed by 

artist-geometers.  They were very familiar with the Euclidean geometry theorems and properties.  These 

designs were normally gathered by stucco makers and other artist-constructors, who would pass them 

along to the next generation.  The designs were graphed on a scroll.  Ink pens were used for major lines.  

However, all circles were sketched with a compass without lead.  Both end points of the compass were 

sharp metal.  The metal etched barely visible grids onto the scroll. Then using straight edge, they drew 

the design with ink.  Today, these scrolls have been disappearing. 
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Even though a number such as seven has mystical and religious importance in eastern cultures, we don't 

observe any dome design or any other wall or floor designs that incorporate regular heptagon or regular 

seven-winged star.  In fact, the geometrical structures of designs introduced in previous sections include 

regular 3, 4, 5, 6, 8, and 10 but misses 7 and 9 gons.  The reason for it may very well be related to the 

idea of the constructible regular polygons. 

 

       The ancient mathematicians discovered how to construct regular polygons of 3, 4, 5, 6, 8 and 10 

sides using a compass and straight-edge alone.  The list of other constructible regular polygons known to 

them included 15 gons and any polygon with twice sides as a given constructible polygon.  No matter 

how much effort, mathematicians, until 1796, were not successful in constructing a regular heptagon by 

compass and straight-edge or prove the construction is impossible.  After a period of more than 2000 

years, Gauss, as a young student of nineteen years, proved its impossibility of construction.  In fact, he 

proved that in general, construction of a regular polygon having an odd number of sides is possible when, 

and only when, that number is either a prime Fermat number, a prime of the form 2
k 

+ 1, where k=2
n
, or 

is made up by multiplying together different Fermat primes [10].  Such a construction is not possible for 

7 nor 9. 

 

       Gauss, at first showed that a regular 17-gon is constructible, and after a short period he completely 

solved the problem.  It was this discovery, announced on June 1, 1796, but made on March 30th, which 

induced the young man to choose mathematics instead of philology as his life work. He requested that a 

regular 17-sided polygon to be engraved on his tombstone.  The Cyclotomic Extensions is a topic that ties 

together results from modern algebra and ancient geometric construction problems.  In this topic, Gauss' 

claim can be proved in a fairly short argument using Galois Theory [11].  Of course, Gauss did not use 

Galois theory in his proof because of the simple reason that the proof occurred 15 years before Galois 

was born.  A proof appropriate for an amateur mathematician can be found in [12].  Gauss’ approach can 

be found in [13] and [14].  

 

 

6. A Jug of Wine, a Loaf of Bread – and Thou 

 

Omar Khayyam, born in 1048 in Neyshabur, a city in Persia, was a mathematician and an astronomer.  

Nonetheless, his fame in the western hemisphere mainly comes from a paraphrase version of his 

Rubaiyat by Edward Fitzgerald.  Rubaiyat is a collection of his quatrains.  A quatrain is a piece of verse 

complete in four rhymed lines.  He is chiefly responsible for revising the Jalali Solar Calendar which is 

still in official use in Iran.  In his native home and the northern neighboring countries, which in a time 

constituted the Soviet Union, he is regarded as "the proof of Truth", the highest praise for a scientist. 

 

       In the time of Omar, universities flourished in the Islamic world and many observatories were built.  

Khayyam was a professor at the Neyshabur Nazamieh, one of a series of university colleges founded by 

his contemporary Nezam Ol-Molk, a celebrated vice-minister.  Khayyam studied and obtained original 

results in Algebra.  His work continued many of the main lines of development in 19
th
-century 

mathematics.  Not only did he discover a general method of extracting roots of arbitrary high degree, but 

also his Algebra contains the first complete treatment of the solution of cubic equation [15]. 

 

       Much of Khayyam's work in geometry centered around Euclid's fifth postulate, parallel postulate.  

He contributed the idea of a quadrilateral with two congruent sides perpendicular to the base.  The 

parallel postulate would be proved, he recognized, if he could show that the remaining two angles were 

right angles.  In this he failed, but his question about the quadrilateral became the standard way of 

discussing the parallel postulate [15].  
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       Although the question of Khayyam’s personal religious beliefs remains a vexed one, the balance of 

scholarly opinion is that he was an orthodox theologian who wrote his quatrains as a private exercise in 

skepticism. 

 

       He died in 1122.  His mausoleum is in Neyshabur.  It has been built in recent years.  The entire 

mausoleum consists of a dome, which is open from every direction.  Its design reflects a combination of 

traditional patterns and contemporary construction.   

 

 

 

 

 

7. Conclusion 

 

In Persian architecture, it was geometry that provided diverse stylistic developments for constructions 

and designs; not only to serve a function, but also to evoke an emotional response by harmonization of 

the constructional elements, such as domes and columns and decorative elements.  The artists and 

architects of those times transferred the geometry into the art of harmonization, engaging feelings and 

emotions. The sophisticated geometry involved in dome interiors shows how artists try to express their 

feelings and emotions, as well as their beliefs and philosophy, through complex geometrical designs 

involving repetition, rhythm, pacing, scale, and color combination.  The construction of stucco domes 

shows that they also were aware of the geometry of 3-dimensional Euclidean space.  The designs reveal, 

through self-similarity, that the artists had a sense of fractal geometry. 

 

 

 

 

Figure 15: Dome Interior of Khayyam’s Mausoleum. Figure 16: Khayyam’s Mausoleum 
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