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Abstract 

From antiquity, humans have created 2-dimensional art on flat surfaces (the Euclidean plane) 
and on surfaces of spheres. However, it wasn't until recently that they have created art in the 
third "classical geometry", the hyperbolic plane. M. C. Escher was the first person to do so, 
doing all the needed constructions laboriously by hand. To exhibit the true hyperbolic nature 
of such art, the pattern must exhibit symmetry and repetition. Thus, it is natural to use a 
computer to avoid the tedious hand constructions performed by Escher. We show a number of 
hyperbolic patterns, which are created by combining mathematics, artistic considerations, and 
computer technology. 

Introduction 

More than 100 years ago mathematicians created the first repeating patterns of the hyperbolic 
plane, triangle tessellations (see Figure 1) which were attractive, although not originally created 
for artistic purposes. In the late 1950's, the Dutch artist M. C. Escher became the first person to 

Figure 1: A pattern of triangles based on the {6,4} tessellation. 

combine hyperbolic geometry and art in his four patterns Circle Limit I, Circle Limit II, Circle 
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Limit III, and Circle Limit IV - see Catalog Numbers 429,432,434 (and p. 97), and 436 (and p. 98) 
of [8]. The patterns of interlocking rings near the edge of his last woodcut Snakes (Catalog Number 
448 of [8]) also exhibit hyperbolic symmetry. It is laborious to create repeating hyperbolic patterns 
by hand as Escher did. In the late 1970's, the first computer programs were written to create such 
patterns. Since then, much progress has been made in this area which spans mathematics, art, and 
computer science ([5] and [6]). 

We will begin with a brief review of hyperbolic geometry and repeating patterns, followed by a 
discussion of regular tessellations, which form the basis for our hyperbolic patterns. Then, we will 
discuss symmetries, symmetry groups, and color symmetry. Finally, we will show more samples of 
patterns, and indicate directions of future work. 

Hyperbolic Geometry and Repeating Patterns 

By definition, (plane) hyperbolic geometry satisfies the negation of the Euclidean parallel axiom 
together with all the other axioms of (plane) Euclidean geometry. Consequently, hyperbolic geom­
etry has the following parallel property: given a line £. and a point P not on that line, there is more 
than one line through P not meeting £.. Hyperbolic geometry is not very familiar to most people, 
and unlike the Euclidean plane and the sphere, the entire hyperbolic plane cannot be isometri­
cally embedded in 3-dimensional Euclidean space. Therefore, any model of hyperbolic geometry in 
Euclidean 3-space must distort distance. 

Escher used the Poincare circle model of hyperbolic geometry which has two properties that 
are useful for artistic purposes: (1) it is conformal (Le. the hyperbolic measure of an angle is equal 
to its Euclidean measure) - consequently a transformed object has roughly the same shape as the 
original, and (2) it lies.entirely within a circle in the Euclidean plane - allowing an entire hyperbolic 
pattern to be displayed. In this model, "points" are the interior points of the bounding circle and 
"lines" are interior circular arcs perpendicular to the bounding circle, including diameters. The 
following are all examples of hyperbolic lines: the sides of the triangles in Figure 1, the sides of the 
hexagons of the {6, ~} tessellation in Figure 2, and the backbone lines of the fish in Figure 2. 

However, the backbone lines in Escher's Circle Limit III pattern (see Figure 6) are not hyperbolic 
lines, but equidistant curves - circular arcs making an angle of approximately 80 degrees with the 
bounding circle (as explained by Coxeter [2]; each one is a constant hyperbolic distance from 
the hyperbolic line with the same endpoints on the bounding circle). Because distances must be 
distorted in any model, equal hyperbolic distances in the Poincare model are represented by ever 
smaller Euclidean distances toward the edge of the bounding circle (which is an infinite hyperbolic 
distance from its center). All the motifs shown in the patterns in this paper are the same hyperbolic 
size, even thought they are represented by different Euclidean sizes. 

A repeating pattern of the hyperbolic plane (or the Euclidean plane or the sphere) is a pattern 
made up of congruent copies of a basic subpattern or motif. All the following are examples of 
motifs: a triangle of Figure 1, a gray half-fish plus an adjacent white half-fish in the Circle Limit 
I pattern (Figure 2), and a hexagon in the tessellation {6,4} (Figure 2). Also, we assume that 
repeating pattern fills up its respective plane. It is necessary that hyperbolic patterns repeat in 
order to show their true hyperbolic nature. 

An important kind of repeating pattern is the regular tessellation, denoted {p, q}, of the hy­
perbolic plane by regular p-sided polygons, or p-gons, meeting q at a vertex. It is necessary that 
(p - 2)(q - 2) > 4 to obtain a hyperbolic tessellation; if (p - 2)(q - 2) = 4 or (p - 2)(q - 2) < 4, one 
obtains tessellations of the Euclidean plane or sphere respectively. The Euclidean plane, sphere, 
and hyperbolic plane are the three 2-dimensional "classical geometries" (of constant curvature). 
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Figure 2: The {6,4} tessellation superimposed on a computer-generated rendition of Escher's 
Circle Limit I pattern in gray and white. 

Many of Escher's patterns are based on regular tessellations. Figure 2 shows the tessellation {6,4} 
superimposed on a computer-generated rendition of Escher's Circle Limit I pattern. Figure 6 shows 
the tessellation {8,3} superimposed on a computer-generated rendition of Escher's Circle Limit III 
pattern. 

This completes our discussion of hyperbolic geometry, repeating patterns, and regular tessella­
tions. Next, we consider the symmetry and coloring of patterns. 

Symmetry Groups and Color Symmetry 

Symmetric patterns are pleasing to the eye, so the patterns we consider have many symme­
tries - and as noted above, truly hyperbolic patterns must be repeating, and so must have some 
symmetry. A symmetry operation or simply a symmetry of a repeating pattern is an isometry 
(distance-preserving transformation) that transforms the pattern onto itself. For example, hyper­
bolic reflections across the fish backbones in Figure 2 are symmetries (reflections across hyperbolic 
lines of the Poincare circle model are inversions in the circular arcs representing those lines - or 
ordinary Euclidean reflections across diameters). Other symmetries of Figure 2 include rotations 
by 180 degrees about the points where the trailing edges of fin-tips meet, and translations by four 
fish-lengths along backbone lines. In hyperbolic geometry, as in Euclidean geometry, a translation 
is the composition of successive reflections across two lines having a common perpendicular; the 
composition of reflections across two intersecting lines produces a rotation about the intersection 
point by twice the angle of intersection. . 

The symmetry group of a pattern is the set of all symmetries of the pattern. The symmetry 
group of the tessellation {p, q} is denoted [p, q] and can be generated by reflections across the sides 
of a right triangle with angles of 180jp, and 180jq degrees; that is, all symmetries in the group 
[p, q] may be obtained by successively applying a finite number of those three reflections. Such a 
right triangle is formed from a radius, an apothem, and half an edge of a p-gon. Those triangles 
corresponding to the the tessellation {6,4} are shown in Figure 1, which thus has symmetry group 
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[6,4]. The orientation-preserving subgroup of [p,q], consisting of symmetries composed of an even 
number of reflections, is denoted [p, q]+. Figure 3 shows a hyperbolic pattern with symmetry group 
[5,5]+ (ignoring color) which uses Escher's fish motif of Escher's Notebook Drawing Number 20 
(p. 131 of [9]) and his carved sphere with fish (p. 244 of [9]); those patterns have symmetry groups 
[4,4]+ and [3, 3]+ respectively. 

Figure 3: A hyperbolic pattern with symmetry group [5,5]+ using the fish motif of Escher's 
Notebook Drawing Number 20. 

One other subgroup of [p, q], denoted [p+, q], is generated by a p-fold rotation about the center 
of a p-gon and a reflection in one of its sides, where q must be even so that the reflections across 
p-gon sides match up. Figure 4 shows a pattern of 5-armed crosses with symmetry group [3+, 10] 
that is similar to Escher's Circle Limit II pattern of 4-armed crosses which has symmetry group 
[3+,8]. In these patterns, the 3-fold rotation centers are to the left and right of the ends of each 
cross arm, and q/2 reflection lines pass through the center of the crosses (and the center of the 
bounding circle). Escher made similar use of the group [p+, q] for his "angel and devil" patterns in 
Notebook Drawing Number 45, Heaven and Hell on a carved maple sphere, and Circle Limit IV, 
with symmetry groups [4+,4], [3+,4], and [4+,6] respectively (see pages 150, 244, and 296 of [9]). 
H. S. M. Coxeter discusses these three patterns and their symmetry groups on pages 197-209 of 
[4]. Figure 5 shows a related pattern of devils with symmetry group [5+,4]. For more about the 
groups [p, q] and their subgroups, see Sections 4.3 and 4.4. of [3]. 

The symmetric use of color can add to a pattern's aesthetic appeal. A pattern is said to have 
n-color symmetry if each of its motifs is drawn with one of n colors and each symmetry of the 
uncolored pattern maps all motifs of one color onto motifs of another (possibly the same) color; 
that is, each uncolored symmetry exactly permutes the n colors. This concept is often called perfect 
color symmetry. In all the examples, we disregard color when discussing symmetry groups. It is 
also important to adhere to the map-coloring principle: copies of the motif sharing a boundary 
segment must be different colors. We usually only say that a pattern has color symmetry if the 
number of colors is 2 or more. 

Figures 1, 3, and 4 exhibit 2-, 5-, and 3-color symmetry, respectively. In contrast, note that the 
fish pattern of Figure 2 does not have color symmetry since the gray and white fish are not equivalent 
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Figure 4: A hyperbolic pattern of 5-armed crosses with symmetry group [3+, 10]. 
I 

Figure 5: A hyperbolic pattern of devils with symmetrw- group [5+,4]. 
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(the gray fish have 60 degree noses and the white fish have 90 degree noses). Escher's print Circle 
Limit III, his most successful hyperbolic pattern, exhibits 4-color symmetry and is based on the 
tessellation {8,3}. In Figure 6 we show the {8,3} superimposed on a computer-generated version 
of that pattern. The symmetry group of the Circle Limit III pattern is more complex than the 
examples we have seen so far - it is generated by three rotations: a 4-fold rotation about the right 
fin tip, a 3-fold rotation about the left fin tip, and a 3-fold rotation about the nose of a fish. The 
two different kinds of 3-fold points alternate around the vertices of an octagon of the {8,3}. 

Figure 6: The {8,3} tessellation superimposed on a computer-generated gray-scale rendition of 
Escher's Circle Limit III pattern. 

Figure 7 shows a hyperbolic pattern with6-Golor symmetry based on the tessellation {lO,3}, 
using the fish motif of Circle Limit III. As with Circle Limit III, the backbone lines form equidistant 
curves, not hyperbolic lines. For more on color symmetry see [7], [11], and [12]. This completes 
our discussion of the theory of hyperbolic patterns. Next, we look at some examples. 

Examples of Patterns 

In 1958, the mathematician H. S. M. Coxeter sent Escher a reprint of an article that Coxeter 
had written [1]. In that article, his Figure 7 displayed the pattern of hyperbolic triangles based on 
{6, 4} that we have shown in our Figure 1. When Escher saw this pattern, it gave him "quite a 
shock" (Escher's words), since it solved his problem of showing a pattern "going to infinity" in a 
finite space. By examining Figures 1 and 2, it is easy to see how the triangles of Figure 1 could 
be modified to obtain the fish of Escher's Circle Limit I pattern. Thus, Coxeter's Figure 7 was 
the inspiration for Escher's Circle Limit patterns. In turn, those patterns motivated the author to 
design computer programs that could draw repeating hyperbolic designs. 

Escher had two criticisms of Circle Limit I: (1) there is no "traffic flow" along the backbone 
lines - the fish alternate directions every two fish lengths, and (2) there are fish of both colors 
along each backbone line. He resolved these problems nicely in his Circle Limit III pattern. We 
show a different solution to the "traffic flow" problem in Figure 8, converting the Circle Limit I 
pattern to one based on the {6,6} tessellation. The resulting pattern has 2-color symmetry, since 
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Figure 7: A 5-fish pattern based on the motif of Circle Limit III. 

Figure 8: A hyperbolic pattern with 2-color symmetry, based on the {6,6} tessellation using the 
black and white fish motif of Circle Limit I. 
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black and white fish are interchanged by translating along backbone lines by one fish-length or 
rotating by 90 degrees about trailing fin-tips. We can solve Escher's second problem as well in 
Figure 9 by using three colors in the pattern of Figure 8, making the fish all the same color along 
a backbone line. The resulting pattern has 3-color symmetry. 

Figure 9: A hyperbolic fish pattern having 3-color symmetry and baSed on the pattern of Figure 
8. 

Escher carved a maple sphere with 12 lizards similar to those of his Notebook Drawing Number 
25 (the sphere and Drawing 25 are shown on pages 245 and 135 of [9]). The pattern of Drawing 25 
is incorporated in Escher's prints Metamorphosis II and III and Reptiles (pages 280, 326, and 284 
of [8]). Figure 10 shows a related hyperbolic pattern. The carved sphere, Drawing 25, and Figure 
10 are based on the tessellations {4,3}, {6,3}, and {8,3} respectively. The left rear feet and left 
sides of the heads of the reptiles are centers of 3-fold rotations in all cases. The :right rear knees 
meet at 2-, 3-, and 4-fold points respectively (of course the knees of the spherical lizards cannot 
meet at a 2-fold point - but the ankles do). 

Escher did not create a spherical pattern based on Notebook Drawing Number 70 (p. 172 of [9]), 
but Schattschneider and Walker [10] did cover an icosahedron with this pattern (which could the­
oretically be blown up onto the circumscribing sphere). Figures 11 and 12 show related hyperbolic 
patterns with 7 and 8 butterflies respectively meeting at left front wing tips. Disregarding color, 
Drawing 70, and Figures 11 and 12 have symmetry .groups [6,3]+, [7,3]+ and [8; 3]+ respectively. 
A pattern of butterflies meeting p at a left front wing tip and 3 at a right rear wing tip can be 
given color symmetry by using p + 1 colors. However, if p is even, three colors are sufficient. 

This completes our selection of sample hyperbolic patterns. In the final section, we indicate 
directions of future work. 

Future Work 

The current version of the computer program can draw repeating hyperbolic patterns with color 
symmetry whose symmetry group is a subgroup of [p, q] and whose motif lies within a p-gon of the 
corresponding tessellation {p,q} . . For more details-on the pattern-drawing process, see [5] and [6]. It 
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Figure 10: A hyperbolic pattern having 4-color symmetry, based on the {8,3} tessellation and 
using the lizard motif of Notebook Drawing Number 25. 

Figure 11: A hyperbolic pattern having 8-color symmetry,based on the {7,3} tessellation and 
using the butterfly motif of Notebook Drawing Number 25. 
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Figure 12: A hyperbolic pattern having 3-color symmetry, based on the {8,3} tessellation and 
using the -butterfly motif of Notebook Drawing Number 25. 

would be useful to be able to draw more complicated patterns than those based on {p, q}, including 
those like Circle Limit III and Notebook Drawings Number 25 which each have 3 kinds of rotation 
centers. At least two of the rotation periods had to be the same in the examples we have shown. 

There are also programs to convert between any two hyperbolic motifs with different values of 
p and q, and to convert from a Euclidean motif to a hyperbolic motif. It would be be useful to 
be able to convert motifs between any of the three classical geometries: Euclidean, spherical, and 
hyperbolic. To this end, it would be useful to have a program to create repeating spherical patterns 
and print them out - onto polyhedra, for instance. 

Finally, it would be useful to automate the specification of color symmetry of a pattern. Cur­
rently this must be done by hand. Considering Figures 11 and 12, which require 8 and 3 colors 
respectively, automatic color symmetry generation would seem difficult. 

Thus there are many challenges left in creating artistic hyperbolic patterns. 
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