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Abstract 

The relationship between music and geometry goes back thousands of ye~s to the Greek quadrivium. Fractal 
structures have been explored in music and sound since at least 1978 (Gardner) and this work has recently been 
extended to specifically explore fractal structures in melodies (Mason and Saffle, 1994; Chesnut, 1996) and in musical 
forms and phrase structures (Solomon, 1998). Among the fractals that have been identified in musical structures are 
Sierpinski's triangle, Peano curves, and the Koch snowflake. 

This paper is an effort to apply fractal observations to the player piano studies of American-Mexican composer 
Conlon Nancarrow. The most clearly mathematically-oriented of Nancarrow's Studies are the canons that explore 
mathematical relationships as simple as two voices in the relationship 3:4 or as complex as twelve voices proportional 
to the pitches of the justly-tuned chromatic scale. In particular, those of the canons which are also "acceleration 
canons"-that is, using carefully controlled rates of acceleration and deceleration among the voices--offer compelling 
possibilities for study of fractal properties. Among the studies which will be examined here are Nos. 14 (two voices) 
and 19 and 27 (three voices). 

Introduction 

The relationship between music and geometry goes back thousands of years to the Greek quadrivium. 
Fractal geometry is a relatively newly-described branch of mathematics based on the 1977 work of Benoit 
Mandelbrot [1] in which elements of self-iteration and scaling are recognized in a variety of naturally­
occurring objects as widely diverse as coastlines and bodily structures such as the brain and bronchial 
lobes. Mandelbrot's theories began to be applied to music and sound beginning in 1978, with fractal 
structures being identified in the nature of sound itself [2,3], in melodies [4, 5], and in musical forms and 
phrase structures [6]. 

Review of the Literature: Fractals, Music, and Sound 

In studying fractal qualities in music, the properties of self-iteration, scaling, and space-filling have been 
the focus of study. According to Solomon [6], "Perhaps the most important defining property of fractals 
is self similarity on many different scales; i.e., they have self-iterating geometric structures that repeat in 
different sizes." Solomon uses the beautiful example of a fern frond, a natural object in which the same 
leafy shape is iterated on a number of different scales. 

The space-filling property of fractals is also important in music. Consider Figure 1, a simple line 
fractal known as a Peano curve. With each new iteration of the generating shape, the space is more 
tightly filled and the length of the line drawing the curve increases. The number of iterations and the 
length of the line can reach infinity, moving toward filling the space but never completely doing so. In 
music, the property of space-filling takes place in the time dimension when a pattern is reiterated in 
proportionally shorter time values. 

Let us now apply the same ideas of self-iteration, scaling, and space-filling to music. Figure 2 shows 
a short "generating motif' that can be compared to the largest triangle of a Koch snowflake. Notice how, 
with the second iteration of the melody, the same melodic shape is reiterated (self-iteration), in 
proportional time values (scaling), and more sonic space is filled. These are not new concepts to 
musicians, who recognize self-iteration in melodic imitation, scaling in rhythmic augmentation! 
diminution, and space-filling (in a ,sonic sense) in the application of these procedures together. 
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(b) (e) 

Figure 1: A Peano curve ([4 J, p. 31), which illustrates the space-filling ability of fractals. With each further 
iteration of the curve, the length of the line drawing the curve approaches infinity. 

(a) The Koch snowflake, 
a scaling fractal. 

I~ I ., I r IT I~e I~ .. II 
(b) A "generating motif' of music composed of a few intervals and durations 

(analogous to the largest triangle in the Koch snowflake). 

(c) The first and second layers of a polyphonic musical composition. The first layer (bottom voice) is the 
original motif, while the second layer (upper voice) is merely a faster (and transposed) repetition of that motif 
added to each of the original motifs notes (analogous to the smaller triangles attached to the larger triangles). 

Figure 2: Properties of self-iteration, scaling, and space-filling in a musical segment ([7J, p. 190). 

Fractals can be observed in music in other ways. In 1978, Gardner [2] wrote of the work of Richard 
Voss, in which the nature of sound itself was revealed to nave fractal properties. Mandelbrot and Voss 
discovered a special class of sounds in which the property of scaling is actually present in the waveform 
itself. These sounds, which Mandelbrot terms "scaling noises," have the fascinating property that the 
sound-including its pitch-does not change if the sound is played at a different speed. 

Voss's work also focused on how the nature of sound relates to the construction of pleasing melodies. 
Gardner [2] describes how Voss identifies the frequency spectra for three types of "noise"-white, 11f 
("pink"), and Brownian-and demonstrates how the properties of these different waveforms could be 
interpreted as melodies. It turns out that 11f ("pink") noise exhibits fractal self-similarity whereas white 
and Brownian noise do not, and it is the melodies based on 1/j noise that most people in a test audience 
found most appealing, based on the melodies' effective balance between complete randomness (surprise) 
and extreme correlation (expectation). 

Fractal properties of melodic structures have been further studied by Mason and Saffle [4], who 
showed how right-angle drawings known as Lindenmayer (L-system) curves could be used to create 
melodies-albeit of questionable musical value. Melodies are created from the curves by interpreting 
horizontal line segments as durations and vertical line segments as pitches. Mason and Saffle also assert 
that many existing melodies can be shown to have strong correlations with L-system curves, although 
their work in 1996 is very preliminary. They did, however, identify L-system curves that "generate tunes 
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that are similar or even identical to hundreds of existing melodies by classical and popular composers" (p. 
35). 

Solomon [6] relates the ternary divisons and forms commonly found in music to the fractal known as 
Sierpinski's triangle (Figure 3), which he compares to a ternary (ABA) scherzo form. The ternary 
relation is obvious, but Solomon also notes that within the larger divisions one often finds binary 
divisions (such as a rounded binary form in the first A section), and these would relate to the binary 
division of the triangle's sides that create further iterations of the Sierpinski triangle. 

Figure 3: An example of Sierpinski's triangle [6]. 

And, of course, it should be mentioned here that the Schenkerian system of analysis has, as a primary 
goal, the identification of self-iterating melodic and harmonic patterns that are represented in both surface 
details and structural components-thus confirming both the properties of self-iteration and scaling as 
being inherent in many tonal compositions. 

Finally, several writers have made fascinating speculations on a basic connection between fractal 
properties in nature, in the nature of sound itself, and our perception of musical beauty. Mason and 
Saffle's work [4] led them to conjecture about a fundamental relationship between our perception of 
beauty in melody and musical form and the presence of fractal qualities in music. As they state: 

Aspects of certain theories about the origins and fundamental structures of melodies suggest that much-perhaps all­
beautiful music is, in some essential sense, fractal in its melodic material and internal self-similarity. (p. 35) 

Later, they say: 

Is there something universally appealing about music-something that transcends individual cultures and tastes? We 
believe the human mind may use one or more models of perception in order to determine whether a given melody or 
musical structure is ugly or beautiful. (p. 36) 

Gardner [2] notes that Mandelbrot, too, has raised similar questions in regard to abstract art: 

Is it possible, Mandelbrot asked himself many years ago, that even completely nonobjective art, when it is pleasing, 
reflects fractal patterns of nature? Mandelbrot has some unpUblished speculations along these lines. He is fond of 
abstract art, and maintains that there is a sharp distinction between such art that has a fractal base and such art that does 
not, and that the former type is widely considereji the more beautiful. (p.24) 

Nancarrow and IDs Player Piano Studies 

Conlon Nancarrow began writing his remarkable player piano studies in the late 194Os, and by the time of 
his death in 1997 this body of work consisted of about 50 pieces. Nancarrow became interested in writing 
music based on "temporal dissonance," or multiple and often conflicting tempos, after reading Henry 
Cowell's book New Musical Resources in 1939. At this time Nancarrow was preparing to flee the United 
States for Mexico as a result of his Socialist party affiliations. He spent the rest of his life in Mexico, 
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working in virtual isolation until his music began to attract notice in his later years and he began to be 
regarded as an eccentric genius (confirmed in 1982 when Nancarrow was among the first class of 
recipients of the MacArthur Foundation's "genius" grants). 

Nancarrow's interest in the player piano was a practical one: as a composer in the late 1930s, he was 
intrigued by Cowell's radical ideas about rhythm yet frustrated by the limitations of human performers in 
interpreting complex tempo relationships. He found the player piano to be the best means available at the 
time for realizing total control over performance. It is fortunate for us that Nancarrow reached this nexus 
in his compositional career when he did-he commented in later years that, had he not found the player 
piano, he would surely have turned in the 1950s to the electronic medium for his compositions. 

More than two dozen of Nancarrow's player piano studies are canons, which are basically of two 
types. In the fIrst type, what I will call "proportion canons," unchanging ratios of tempos are established 
among the canonic voices. These canons have ratios in their subtitles, for example "Canon 12115/20" and 
"Canon .../2/2." The second type of canon is the "acceleration canon," which uses carefully controlled 
rates of acceleration and deceleration among the voices to create what Gann [8] calls a "sense of curved 
time" (p. 146). These canons often have percentages in their subtitles, such as "Canon 5%/6%/8%111 %" 
(Study No. 27). 

Study No. 14, "Canon 4/5" and Study No. 19, "Canon 12/15/20". We can begin our exploration of 
fractal properties in Nancarrow's studies with Studies No. 14 and 19, which are both part of a group of six 
canons (Nos. 14-19) that are based on the additive rhythm formula (n-l, n, n+l, n). In both canons, the 
total length of the canonic part (337 eighth note beats) is derived from three versions of the additive 
formula: 3+4+5+4, 5+6+7+6, and 6+7+8+7. The first pattern contains a total of 16 eighth notes, the 
second 24, and the third 28; the smallest common multiple of these patterns is 336, arid to make the 
patterns converge at the end a fInal note is added for a total of 337 beats (see Figure 4). A fourth voice 
declaims the pattern 4+5+6+5, although this pattern is varied among the six pieces so that they do not all 
have the same rhythm. In Study No. 14 [10] the four patterns are collapsed into a resultant rhythm; the 

Formula = n-l, n, n+l, n 

Pattern 1: 3+4+5+4 = 16 eighth-note beats 

Pattern 2: 5+6+7+6 = 24 eighth-note beats 

Pattern 3: 6+7+8+7 = 28 eighth-note beats 

Smallest common multiple = 336 

Figure 4: Derivation of additive rhythm formulas in Studies 14-19. A fourth pattern, 4+5+6+5, provides rhythmic 
variety among the six pieces. The total beat length of Studies No. 14 and 19 is 337 beats (i.e., beginning and ending 
with a convergence of the three patterns). 

resulting rhythmic attacks are shown in Figure 5. A glance at the rhythmic, structure reveals another 
additive formula that occurs among the four voices: beginning with the top voice, additive patterns of 
3+4+5+6,4+5+6+7, and 5+6+7+8 (identifIed in the shaded boxes) can be traced descending toward the 
right, with each pattern lengthening in time. The patterns soon become obscured as they overlap, but 
before this happens I believe it is possible to perceive an arithmetical deceleration effect as the note 

values increase from the second measure ( :) to the third ( ~). Whether they can be heard or not, the 

three additive patterns can be traced to the end of the piece, and represent self-similarity and scaling on a 
large scale. 

Study No. 14, subtitled "Canon 4/5," is a two-voiced "proportional" canon in which the top voice 
states the canon 20% faster than the bottom voice. The bottom voice begins the canon, and the top voice 
enters at exactly the point that allows the two voices to converge in the center-at which point, the 
"follower" voice becomes the "leader" and vice versa. The interval of imitation is 2 octaves plus a fIfth 
(see Figure 6). The bottom voice (J=88) states the fIrst 33.7 (337 x 20% = 67.4/2 = 33.7) beats of the 
canon before the top voice enters at J=110 (a tempo relationship of 4 to 5). Once the canon is underway, 
the top voice-going 20% faster-states 30 beats in each system to the bottom voice's 24 (in 
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voice #2 (4+5+6+5) 

voice #3 (5+6+7+6) 

voice #4 (6+7+8+7) 

resultant rhythm: 

Figure 5: Derivation of rhythmic attacks in Nancarrow's Study No. 14. 

Nancarrow's hand-written scores, the amount of space between notes is proportional to elapsed time). 
The two voices converge at the midpoint (beat 169), at which point the top voice becomes the leader; the 
piece concludes with the bottom voice stating its final 33.7 beats alone. Carlsen [9] calls this an "arch­
shaped canon" (p. IS). 

convergence point (beat 169) 

33.7 beats 33.7 beats 

lllO (follower) (leader) 

J=88 (leader) (follower) 

337 total beats in each voice 

Figure 6: Structure of Study No. 14. The top voice states the same musical material as the lower voice but at a 
higher pitch and a faster rate of speed. Canonic voices converge in the middle to form an arch. 

Study No. 19 [11], subtitled "Canon 12/15/20,"1 uses three canonic voices and is constntcted so that 
the point where all three voices converge is the very last note of the piece. In Study No. 19, the four 
additive rhythm formulas are clearly delineated into four distinct registers, opening with a 4-note chord 
that spans four octaves. Both Gann [S] and Carlsen [9] note that each of the four voices declaims 
basically the same melody, with the slower voices occasionally dropping a note in order to keep up with 
the faster voices. Carlsen [9] calls attention to this as a sort of Chinese-nested-boxes fractal relationship. 

Like Study No. 14, No. 19 begins with the lowest (and slowest) voice (J=I44); it then adds a faster 
middle voice (J=IS0) and a faster-still top voice (J=240). In order for the convergence point to occur at 
the end, the first voice must state 67.4 eighth-note beats before the second voice enters. The interval of 
imitation between the voices is an eleventh, and the range of each voice is four octaves. Since the range 
of Nancarrow's piano is narrower than a standard piano by two keys on the, bottom and three keys on the 
top, the entire keyboard is used, with the voices intentionally arranged so that the middle voice is 
symmetrical about the piano's middle note (E4). The basic structure of Study No. 19 is shown in Figure 7. 

11 can find no reason why Nancarrow specifically chooses the ratio 12:15:20 instead of the superparticular ratio 
3:4:5 to which it reduces, despite the claim of Teimey [12] that 12:15:20 "incorporates" the three ratios 3:4, 4:5, and 
3:5 used in this series (p. 51). This canon and No. 17 (which uses the same ratio, 12:15:20) are the only ones which 
use a non-reduced ratio in the subtitle. 
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J=240 (follower 2) 

J=180 (follower 1) 

337 total beats in each voice 

convergence point 
(beat 337 -- end of 

Figure 7: Structure of Study No. 19. The musical material in the lowest voice is restated twice at progressively 
higher pitch levels and faster rates of speed. The voices converge on the very last note. 

Perhaps the best way to perceive the fractal nature of the overall forms of these two studies is by 
hearing them-the reader can listen to these brief pieces on [13] and [14]. The properties of self-iteration 
and scaling are convincingly represented in the simultaneous statement of. identical (but transposed) 
material at different speeds-in each case, the first statement of the canon (the lowest voice) is the 
"largest" statement, to which are added successively "smaller" statements. Through the dimension of 
time, the space-filling aspect is convincingly portrayed by the progressively faster voices. 

Study No. 27, "Canon 5%/6%/8%/11 %." Let us look now at an example of an "acceleration canon": 
Study No. 27, described by Gann as "Nancarrow's acceleration tour-de-force" [15]. Nancarrow used. two 
different types of acceleration/deceleration in his studies that had very different effects. The first type, 
arithmetical, is familiar to us already from the works of composers such as Messiaen. In arithmetical 
acceleration/deceleration, the same time value is subtracted from or added to each note to determine the 
length of the next note-for instance, a deceleration effect resulting from a sixteenth note to which is 
added on each successive iteration another sixteenth note, creating the pattern sixteenth note, eighth note, 
dotted eighth note, quarter note, etc. The resulting effect is not a smooth continuum, but a constantly 
increasing rate of change. 

In geometric acceleration/deceleration, on the other hand, the rate of change is kept constant. The 
resulting rhythm is not a chain of standard note values and is too unwieldy to notate conventionally. 
Nancarrow found arithmetical acceleration to be adequate for small-scale effects, but geometric 
acceleration is far superior for the long, smooth acceleration and deceleration effects that could have 
structural significance. Study No. 27 [11] is one of eight studies Nancarrow wrote using geometric 
acceleration and deceleration; the percentages in the title indicate the four rates of acceleration and 
deceleration that are used in the piece. The piece also features a "clock" line in the middle of the texture 
that repeatedly states the same four pitches and forms a constant throughout the piece, creating a frame of 
reference against which the tempo changes can be heard. 

Although in Studies No. 14 and 19 there is a clear mathematical basis for the rhythm of the voices, 
such does not appear to be the case for Study No. 27. Because there is no meter and the geometric . 
acceleration technique requires spatial notation in the score, even in the clock line it would be difficult to 
discern a definite pattern. Whether or not any fractal structures will emerge in the rhythm is an area for 
further study. 

Unlike the simpler forms of Studies No. 14 and 19, Study.No. 27 is actually constructed of a series of 
11 different canons. Its texture is also more complex because of the greater number of voices: there are 
four canonic voices plus the clock line in the middle. Within this structure, however, are smaller 
structures that are similar to the simpler canons in their fractal nature. Near the end of the piece, the 
structure of the ninth canon overlaps the four voices so that they are symmetrical about their centers in the 
same way that Study No. 14 was (see Figure 8). The voices progressively enter froni highest to lowest in 
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descending 112-step increments: the first voice on D, the next on C#, then C, and finally B? This 
chromatic progression happens to be a transposed version of the four chromatically adjacent pitches 
which comprise the clock line, whose notes are 0#, E, F, and Gb. 

First Note: 

D 
accel. 11% 

ritard.8% 
C# 

II clock" line 

C accel. 6% 

B 
ritard.5% 

Figure 8: Diagram of the structure of the ninth canon in Study No. 27. Each voice states the same musical 
material at a different pitch level and at a different rate of acceleration or deceleration (ritard.=ritardando). 

In this piece, the coincidences of the numerous canonic structures can be quite striking to the ear 
when they emerge from the contrapuntal texture. The very end of the piece is an excellent example-as 
in Study No. 19, Nancarrow sets up the four voices so that they converge on the last note in an audible 
fractal structure, with the same melodic pattern in all the voices but at different scales (rates of speed). 
On the final ascending scalar pattern from A 3 to G4 each voice is assigned a rate of acceleration that , 
becomes progressively faster in relation to the registral placement of the voice: the lowest voice 
accelerates at 5%, the next highest at 6%, the next highest at 8%, and the highest voice at 11 %. The 
smoothness of the geometric acceleration as the voices race progressively faster to the final note is a 
stunning effect. 

The reader is encouraged to hear the piece in its entirety on [14]. 

Conclusion 

Nancarrow's interest in temporal relationships, realized through the structure of the canon and the 
medium of the player piano, provided him the means to create what we can now recognize as fractals in 
sound. The pieces discussed here represent only a small portion of Nancarrow's ingenuity in 
manipulating musical resources such as tempo and form to convey the fractal qualities of self-iteration, 
scaling, and space-filling. The space-filling quality, in particular, finds new expression in Nancarrow's 
canons through the dimension of time as expressed in tempo. 

It is my hope that this brief outline of the study of fractals in music over the past twenty-plus years, 
and the overview of Nancarrow's canons and possible fractal applications for their study, will reveal 
exciting new possibilities for the further study of both. Scholarship in both areas is still emerging and 
dates back only a few years. There is undoubtedly a great deal more to be revealed on the fractal nature 
of music, and the player piano music of Conlon Nancarrow offers a unique and exciting field of study for 
identifying fractal structures in music. 
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