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Abstract 

M. C. Escher's work Circle Limit III is a graphic representation of one of Henri Poincare's relative consistency 
proofs for hyperbolic geometry. Poincare, an opponent of the modem conception of mathematical truth, used this 
proof as the center point of an argument defending the competing view of mathematical truth put forward by 
Immanuel Kant against the charge that it is compietely undermined by the existence of non-Euclidean geometries. 
This defense led Poincare to limit the scope of geometry to spaces of constant curvature. This limitation was 
challenged by Hans Reichenbach who generalizes Poincare's argument. This generalization, pictured in Escher's 
work Balcony, however, uses Poincare's argument to support the modem view of mathematical truth that it was 
initially designed to attack. 

1. Introduction 

Friedrich Nietzsche argued that even the most radical revolution will become invisible when it 
triumphs completely. So it is with the modem view of mathematical truth. It is far too easy to see the 
entire history of mathematics through the lens of this conception of truth by taking the vital results that 
make up the history of mathematics to form a continuum leading smoothly to the present. But this placid 
vision does not contain the true spirit of history which resides in the philosophical struggles that lie just 
beneath the surface of each advance. 

The philosophical struggles that lie beneath the establishment of the modem view of mathematical 
truth itself are in large part a result of the development and establishment of non-Euclidean geometry. 
Central to this story is Henri Poincare with his relative consistency proofs for hyperbolic geometry. 
Poincare took these relative consistency proofs to be more than mere formal results; he endowed them with 
philosophical content that he thought undermined the modem conception of mathematical truth which was 
just beginning to take hold in his time. Instead, Poincare thought his relative consistency proofs saved a 
reformed version of the model of mathematical truth found in the works of Immanuel Kant. The 
philosophical result of these considerations is Poincare's geometric conventionalism. 

This conventionalism led Poincare to limit the scope of geometry to spaces of constant curvature, 
excluding the work of Bernhard Riemann on generalized manifolds. Opposed to this limitation, we fmd 
Hans Reichenbach, an early 20th century philosopher of mathematics, who extended Poincare's 
conventionalism to broaden its scope to include spaces of arbitrary curvature. Reichenbach's extension of 
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Poincare's position brings it perfectly in line with the modern conception of mathematical truth making 
Poincare a forefather of the very view he was attempting to defeat. 

Both Poincare and Reichenbach explicate their arguments via flatland, or more properly two­
dimensional curvedland, examples. In visualizing these worlds whose geometries differ from our own, we 
are very. fortunate to have the work of Dutch artist M. C. Escher. Escher's works Circle Limit III and 
Balcony are exact graphical representations of the arguments that Poincare gives for his version of 
geometric conventionalism and Reichenbach posits for his extension of that view. Escher has illustrated 
this episode in the history of geometry. 

2. Relative Consistency and Hyperbolic Fish 

Due. to the compartmentalization of the mathematical sciences and the humanities, students (and 
professors!) are often unaware of how eminent an influence Euclid's Elements was upon the entire history 
of western thought. Because of its breadth and rigor, Rene Descartes, the discoverer of analytic geometry 
and father of modern philosophy, thought that Euclid's work should stand as the model of all reasoning. In 
Discourse on Method, he wrote: 

''Those long chains of utterly simple and easy reasonings that geometers commonly use to 
arrive at their most difficult demonstrations had given me occasion to imagine that all the 
things· that can fall within human knowledge follow from one another in the same way [2, 
p.IO]." 

Considering the "geometric method" as the hallmark of well-reasoned intellectual activity is seen 
throughout the development of western thought. We fmd writers modeling their treatises directly upon 
Euclid in areas as disparate as Baruch Spinoza's metaphysical discourse Ethics and Isaac Newton's master 
work of physics Mathematical Principles of Natural Philosophy. 

Because of this privileged place reserved for Euclid, one cannot overstate the shock that occurred 
to the foundation of western thought when Nikolai Lobachevski and Janos Bolyai independently produced 
a geometric system whose basic axioms were not those of Euclid. Positing an alternative geometry 
questioned self-evidence as legitimate grounds for rational belief. This struck at the heart of our 
understanding of truth itself in virtually every account from Plato to Kant. 

While the infamous, counter-intuitive results we find in Lobachevski's "Geometrical Researches 
on the Theory of Parallels" were not contradictory, a fmite set of non-contradictory theorems does not 
guarantee that the set of axioms is consistent. A contradiction may occur in an as yet unproved theorem. 
Discovery of an inconsistency in Lobachevski's system would have been generally well received as it 
would show the primacy of Euclidean geometry and thus allow classical understandings of the means of 
obtaining rational beliefs to remain intact. 

But Euclidean geometry not only would not, but could not surface as logically superior. This was 
demonstrated by the relative consistency proofs by Eugeno Beltrami, Felix Klein, and Henri Poincare. 
These proofs showed that as long as Euclidean geometry remained free of contradictions, so would the 
non-Euclidean geometries. Since nobody wanted to surrender plane geometry, they now also could not 
jettison the alternatives. . 

A relative consistency proof is based upon the fact that contradictions arise not from the content of 
the theory, but from the form of the axioms making up the basis of the theory. Consistency is a formal and 
not semantic property. If one can translate the meanings of the basic terms of a theory S1 into the language 
of a theory S2 so that the reinterpreted axioms of S1 become theorems of S2, then the only way that S1 could 
contain a contradiction is if S2 has inconsistent theorems, i.e., if S2 is also inconsistent. If we can translate 
the axioms of S1 into theorems of S2 and are willing to believe that S2 is consistent, then we must also 
consider S1 to be consistent. 

Poincare provided us with one of. the most famous relative consistency proofs by fmding a 
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Euclidean model of the hyperbolic axioms. In other words, Poincare succeeded in translating every qasic 
Lobachevskian geometric term-e.g., space, line, and distance-into the Euclidean language. He begins 
by specifying a circle in Euclidean s ace, termed the limit circle. 

Figure 1: A line in Poincare's relative 
consistency proof 

The term "space" in our reinterpreted Lobachevskian system, "spaceL'" is taken to represent the 
area inside, but not including the limit circle as in Figure 1. LinesL are open diameters of the limit circle or 
open arcs whose tangents are perpendicular to the tangents of the limit circle at the points of intersection. 
To determine the distanc~ between two points a and b in the interior of the limit circle, one fmds the lin~ 
connecting them and the points, c and d, at which thelin~ intersects the limit circle. The distanceL 
between a and b is (Y2)log{[(c-a)/(c-b)]/[(d-a)/(d-b)]). 

This reinterpretation is pictured in Escher's Circle Limit III, Figure 2. The area inside of the circle 
is spac~ under Poincare's translation. The fish are arranged in Euclidean circular arcs, but also in 
reinterpreted Lobachevskian equidistant curveSL. They get smaller as they approach the limit circle in our 
Euclidean notion of length, but they are all the same lengthL. In this print, we easily see some of the 
famous Lobachevskian results. For example, consider any given equidistant curve. We can fmd two other 
equidistant curves that intersect with each other, yet neither intersects the original equidistant curve. 

Figure 2: M.C. Escher's "Circle Limit III" 
@ 2001 Cordon Art B. V. - Baam -
Holland. All rights reserved. 
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This representation is not accidental. Escher fIrst saw a graphical representation of Poincare's disk 
in the great geometer H. S. M. Coxeter's article "Crystal Symmetry and its Generalizations" and wrote to 
his acquaintance Coxeter that this image, 

" ... gave me quite a shock. Since a long time I am interested in patterns with 'motives' 
getting smaller and smaller till they reach the limit of infmite smallness. The question is 
relatively simple if the limit is a point in the center of a pattern. Also a line-limit is not 
new to me, but I was never able to make apattern in which each 'blot' is getting smaller 
gradually from a centre towards the outside circle-limit, as shows your fIgure 7. I tried to 
fIgure out how this fIgure was geometrically constructed, but I succeeded in only fInding 
the centres and radii of the largest inner-circles. If you could give me a simple explanation 
how to construct the following circles, whose centres approach gradually from the outside 
till they reach the limit, I should be immensely pleased and very thankful to you! [1, 
p.19]." 

Indeed, it is not only Escher, but all of us who ought to be thankful for Coxeter's reply. The result was a 
series of block lithographs entitled Circle Limit I-IV. The frrst in this series, Escher himself considered 
"awkward." [4, p.126] But the third, he considered a triumph. To his son,he wrote of Circle Limit III, 

"I've been killing myself, frrstto fmish that litho and then, for four days with clenched 
teeth, to make another nine good prints of that highly painstaking circle-boundary-in­
color. Each print requires twenty impressions: fIve blocks, each block printing four times. 
All of this with the odd feeling that this piece of work means a 'milestone' in my 

development and that, besides myself, there will never be anyone else who'll realize that 
[5]." 

Little did Escher know of the philosophical ramifIcations that lie within his labors. 

3. Conventional Wisdom and the Plane Truth 

The modem view of mathematical truth colors the standard interpretation of Poincare's discussion. 
Because the modem view is so deeply entrenched and because Poincare was so great a mathematician, 
Poincare's philosophy of mathematics and the modem approach are often wrongly united. 

The modem view of mathematical truth turns on no notion deeper than deductive closure. A 
mathematical proposition is true just in case it is entailed by whatever set of axioms the mathematician has 
chosen to start from. We freely select the rules and the starting point and whatever follows is taken as true. 
Mathematical truth as deductive dependence, is a relative notion. Consider a certain proposition in set 
theory that requires the axiom of choice for its derivation. Is the axiom of choice true? There is no answer 
here. If you want to include the axiom of choice, include it. If not, then don't. First decide, then we'll 
talk about truth. 

It is not difficult to see why Poincare's conventionalism, in which the choice of geometric system 
is free to be selected at whim, is thought to spring from this view. But, in fact, Poincare's geometric 
conventionalism was an explicit attempt to avoid it. 

The modem view stems from the axiomatic project of David Hilbert, but has its roots in the 
rationalism of the 16th and 17th century. We see this classi~al view most clearly stated in the writings of 
David Hume [8] who considered mathematical truths to be "relations of ideas," i.e., statements whose 
denials ate contradictions. As a result, mathematical propositions are really nothing more than interesting 
restatements of the principle of the excluded middle. While on the one hand the strength of this foundation 
is undeniable, it also means that mathematical truths are devoid of true content, i.e., mathematical truths 
are not really true of anything. 

The modem view extends this to give as a grounding to mathematics not only the logical 
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proposition "A or not A," but also whatever axiom set the mathematician chooses to start from. But since 
these are freely selected, again mathematical truth is not really true of anything. 

Poincare [13] refused to accept this assertion of the vacuousness of mathematical propositions. He 
argued that the work of the mathematician is creative and creativity would have no place in deriving mere 
empty propositions. Furthermore, mathematical results are based upon mathematical induction, a process 
whose ampliative nature is radically contrary to the deductivist notions underlying the axiomatic approach. 
Mathematical propositions must be seen to have real, deep, and interesting content. 

This also was the view of Immanuel Kant [9]. Kant held that mathematical truths belonged to a 
strange group of propositions he termed synthetic a priori. Like empty truths of logic that do reduce to the 
principle of the excluded middle and unlike observational statements, mathematical truths are knowable 
without experience. This is what the a priori means. But similar to observational statements and unlike 
logical truths, they say more than just "A or not A." This is why such statements are synthetic instead of 
analytic. They synthesize additional beliefs that go beyond the meanings of the terms in the propositions 
and therefore require more than mere linguistic analysis to determine their truth. 

The determination of the grounding for such synthetic a priori statements was Kant's central 
project in many of his works, most notably his Critique of Pure Reason. The basis for belief in synthetic a 
priori statements that Kant proposes is psychological. Synthetic a priori statements are not truths of the 
external world of experience, but rather are the principles by which we create the external world of 
experience from the raw manifold of our jumbled perceptions. In the same way that an operating system 
must be loaded onto a computer in order to run programs, so too the synthetic a priori statements must not 
only be in the mind prior to experience, but such notions are the internal instructions by which the mind 
forms experiences out of the raw input it gets from the senses. And just as one purchases a computer with 
the operating system already loaded, so too do we get as a package deal a mind and the synthetic a priori 
propositions when created hUman. Further, just as one would be hard pressed to purchase a machine 
without a Microsoft operating system, so too are we restricted in the form of the synthetic a priori. All 
humans have the same basic internal instructions for constructing experience. Kant knew nothing of 
Linux. 

Poincare agreed with Kant on this basic outline. Mathematical knowledge, according to Poincare, 
possesses content and springs from an intrinsic mathematical intuition that is naturally a part of the human 
mind. There are mathematical truths that do not dissolve down to the principle of the excluded middle, but 
that we as humans were unable to deny. The truths of arithmetic, for example, Poincare asserted are 
simply a part of how the human mind works. Arithmetic, Poincare argues, is based upon iterative processes 
and "[m]athematical induction-Le., proof by recurrence-is, ... , necessarily imposed on us, because it is 
only the afftrmation of a property ofthe mind itself [13, p.13]." 

But Kant's picture runs into trouble with the advent of non-Euclidean geometry. Plane geometry, 
Kant asserted, was the way in which we construct the space of experience and is the only possible space 
which may be so constructed by the human mind. Of course, at Kant's time this seemed indubitable. The 
idea of a geometry other than Euclid's was considered absurd. But in Poincare's era, there it stood in all of 
its relatively consistent glory. 

It is in response to this problem in Kant that Poincare adds life to his relative consistency proof 
[13]. He asks us to imagine a world enclosed in a sphere. In this world, the temperature is not uniform but 
decreases as we move from the center towards the surface of the sphere which is itself at absolute zero. 
Further, all objects in the world have the same coefficient of thermal expansion and transported objects 
instantaneously reach thermal equilibrium. What would such a world look like? Just like Escher's Circle 
Limit III. 

If we were to people the world with beings, say ftsh, with minds like our own, what sort of 
geometry would be natural to them? Poincare comes to the conclusion that they would possess radically 
different intuitive geometric notions than our own despite having similar minds. "[B]eings like ourselves, 
educated in such a world, will not have the same geometry as ours [13, p.68]." The ftsh would think that 
linesL are real lines. They would think that distancesL are real distances. We would, of course, correct 
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their mistaken notions and tell them that they, in fact, live in a fmite space and shrink as they move in what 
they mistakenly believe to be a line. They would certainly take umbrage at our claim to geometric 
superiority, especially when our hypotheses are so bizarre. They would steadfastly maintain that they 
remain precisely the same size when they move in a line and that their space is infinite in all directions as 
they can move arbitrarily far in any direction. 

With this science fiction scenario, Poincare is arguing that minds like ours are not intrinsically 
limited to Euclidean geometry. This seems like a radical break with Kant. Poincare appears to be 
surrendering the doctrine of the synthetic a priori. This appearance is further amplified by the 
philosophical ramifications that Poincare gleans from the fish's experience. 

Poincare argues that the disagreement between us and the fish needs not to be resolved, but 
dissolved as it is only illusory. The key is the "dictionary" that Poincare used in creating the relative 
consistency proof in the first place. The Lobachevskian terms were translated into the Euclidean language. 
When we realize that we are using Euclid-speak and they are using Lobachevski-speak, we will then be 
able to translate our propositions back and forth before speaking to one another and then we would 
suddenly realize complete agreement upon everything. Geometry, therefore, becomes a conventional 
matter of language. As French is no more true than German, so one geometric system is no more true than 
any other. 

Again, what could be less Kantian than this freedom of choice in determining mathematical truth? 
Indeed, it seems strongly correlated with the modem view. But this appearance is only on the surface. 

Poincare's full explication returns the Kantian flavor, while expanding the view beyond an orthodox 
reading of Kant. 

Poincare begins by drawing a distinction between what he calls changes of position and changes of 
state. A change of position is exactly what it sounds like. An object has undergone a change of position 
when it is no longer at the same location. A change of state, on the other hand, is an alteration of the 
properties of an object other than location, say, its size or shape. The study of changes in position alone, 
i.e., to speak of behaviors of invariable solids, is the defmition of geometry. The study of variable solids, 
i.e., the study of changes of state, is not mathematics at all, but rather the purview of science, in particular 
physics. 

In this way, Poincare sees hyperbolic and elliptical geometries not as systems competing with 
Euclid's, but as-coming together with plane geometry to form a generalized geometry. In Euclid one may 
construct similar figures of any size. This is not true in the non-Euclidean systems. But while one cannot 
enlarge or shrink a figure without deformation, one is free to move it arbitrarily without deformation. 
Hence the hyperbolic and elliptical systems are different geometric languages, but they are geometric. This 
defmition of geometry in terms of the change of position/change of state distinction gives us a generalized 
picture of geometry in which Euclid is a special case. 

The next step in generalizing geometry naturally seems to be the move to spaces of arbitrary 
curvature, i.e, the generalized manifold geometry of Riemann. For Poincare, however, this move crosses 
the line. No longer are we generalizing geometry because in spaces of non-constant curvature we cannot 
arbitrarily change the position of an object without a change of state. There suddenly is no longer even the 
possibility of invariable solids. Since geometry is defmed as the study of invariable solids, there is no 
geometry here. 

Why do we require invariable solids? Why can we not think of the world as being made of rubber 
bands? Simply because we as humans cannot conceive of not being able to move things without distorting 
them. The concept of ideal invariable solids is where Poincare draws the new Kantian line in the sand. We 
may disagree with Escher's fish about when an object is or is not moved without deformation, but in 
disagreeing we are all starting with the presupposition that such movement without deformation is at least 
in principle possible in our space. The synthetic a priori is not abandoned as it first seemed, but its scope 
is altered to account for the relative consistency of the non-Euclidean geometries of spaces of constant 
curvature. As these systems provide alternative means of describing changes of positions, we are free to 
conventionally speak in terms of whichever of these geometric systems we choose, but we may only speak 



Flatland, Curved Space: How M. C. Escher Illustrated the History of Geometry 129 

in terms of these systems. What we cannot do, according to Poincare, is deny that movement without 
physical variation is possible. Just as in arithmetic, we see Poincare in league with Kant, only he expands 
the geometric notions in Kant to enable accounting for non-Euclidean geometry. 

4. Gijdel, Escher, Reichenbach 

The limitation of geometry to the study of spaces of constant curvature seemed quite artificial to 
numy. Amongst the voices eager to overcome the barrier was Hans Reichenbach, a philosopher of 
mathematics of the first half of the 20th century who as an undergraduate attended the lectures of David 
Hilbert and after obtaining his Ph.D. was one of the small handful of students to attend Albert Einstein's 
fITst seminar on general relativity at the university at Berlin in 1919. In his most well-known work, 
Philosophy of Space and Time. [14], Reichenbach argues that Poincare was correct that geometric truths 
are conventional, but that such conventionality must be extended to include the generalized geometry of 
Riemann. Aware of Poincare's flatworld argument, Reichenbach sets out his own. While there are 
similarities between the scenarios, what is most important are the aspects in which they are intentionally 
made to differ. 

Reichenbach invites us to "imagine a big hemisphere made of glass which merges gradually into a 
huge glass plane [14, p.11]". See figure 3. Below this is a flat, opaque surface parallel to the plane section 
of the surface above. This lower plane is endowed with a strange physical property, the length of an object 
placed upon the plane becomes that of an object projected down from the surface above. 
This physical property Reichenbach calls a ''universal force." Ben~th the plane section of the top surface, 
therefore, the behavior of measuring rods conforms perfectly to Euclid as the universal force does nothing 
to the rods. Under the hemispheric hump, however, the universal force shrinks the rods in such a fashion 
that measuring results are exactly those as would be observed in the curved region of the top surface. If we 
were to take a circle of wire of unit circumference and measure its radius, we would measure the expected 
Euclidean result of 1I(21t) in the outer reaches, but a distance greater than that in the central region. 

Figure 3: Reichenbach'sflatworlds 

Reichenbach's bare sketch of the situation is stylized in Escher's work Balcony shown in Figure 4. 
In this print, we believe ourselves to see, as Reichenbach describes, a bulging hemisphere rising smoothly 
from a plane surface altering the geometry of the building. But we must remember that this is a print on a 

. flat piece of paper. Just as in Reichenbach's lower flat world, the geometry remains the same-it is the 
physical relations are changed. Where Reichenbach makes use of his strange "universal forces," Escher 
uses a more mundane impetus. 
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"The ... print gives the illusion of a town, a block of houses with the sun shining on them. 
But. . .it's a fiction for my paper remains flat. In a spirit of deriding my vain efforts and 
trying to break up the paper's flatness, I pretend to give it a blow with my fist at the back, 
but once again it's no good: the paper remains flat and I have created only the illusion of 
an illusion. However, the consequence of my blow is that the balcony in the middle is 
about four times enlarged in comparison with the border objects [4, p.66]." 

Figure 4: M.e. Escher's "Balcony" 
@ 2001 Cordon Art B. V. - Baam - Holland. 
All rights reserved. 

Just as in Reichenbach's scenario we have what is truly a flat surface giving the illusion of a change in 
geometry when it really is a physical change. The balcony is not truly bulging, but it is enlarged relative to 
its surroundings. What we thought was a result of a change in geometry is in fact a physical alteration. 

Reichenbach follows Poincare in peopling his world with beings with minds like ours. He asks 
whether the people on the flat plane would conclude that their world is flat with an odd force that alters the 
size of objects in the center region or whether their world has no such strange forces and has a hemispheric 
hump arising in the center like their neighbors above. Is there really a fact of the matter as to whether the 
change has a geometric or physical root? Can we expect to be believed when we tell the people standing 
on Escher's balcony who think that they have remained the same size, but now are outside of the plane of 
the building that contrary to how they think they see it, they are actually remaining in the plane and have 
become expanded to about four times their previous size? 

Like Poincare, Reichenbach argues that because we are able to translate back and forth between 
those who say that the alterations possess a geometric explanation and those who assert their genesis in a 
physical cause, the choice is merely linguistic and therefore conventional. We have an argument for 
conventionality that does not seem different at all from that of Poincare. Intertranslatability entails 
conventionality. 

But there is an important difference between the two scenarios. Unlike Poincare's world, 
Reichenbach's is a space of non-constant curvature. It is important to see. that this is not an accidental 
aspect. Reichenbach makes reference to Poincare in this section of his book and so could have very well 
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simply appropriated Poincare's example. If he had limited himself to the area under the hemispheric 
hump, he would have had a Poincarean example. But Reichenbach intentionally embeds this hump in a 
flat plane. He intentionally runs through Poincare's argument in a space of variable curvature forcing its 
generalization. 

His motivation is summed up in a claim made in the introduction to Philosophy of Space and 
Time. Reichenbach writes that "a philosophy of space and time is nowadays always a philosophy of 
relativity [14, xiv]." Not long after Poincare published his argument, Einstein's general theory ofrelativity 
was born. Indeed, we know from Einstein himself [3] that he had read Poincare's argument for geometric 
conventionalism and was explicitly influenced by it. The central equations of this theory, the Einstein field 
equations, connect the distribution of mass and energy in the universe with the metric tensor of spacetime. 
In giving a relativistic account of gravitation, Einstein takes geometry and puts it into playas a physical 
entity. Reichenbach's extension of Poincare's argument for geometric conventionalism is a direct result of 
the fact that in general relativity, for any non-trivial mass-energy distribution, the geometry that best 
describes the space of experience is a space of variable curvature. 

Our best scientific theory allows Reichenbach to save Poincare's geometric conventionalism, but 
forces him to abandon the distinction between changes of position and changes of state as entirely 
untenable. We can no longer bracket mathematics off from physics as Poincare desires. Mathematics is no 
longer an idealization which we correct with physical explanations, but rather has become an integral part 
of the physical explanation itself. Where Poincare had to make use of a contrived temperature distribution 
for his example, Reichenbach's strange universal forces are nothing other than gravity itself as understood 
in the relativistic sense. 

But recall that this distinction was put in place by Poincare to safeguard the Kantian understanding 
of mathematical truth as containing content. Poincare did what he did to try to account for non-Euclidean 
geometries without completely abandoning Kant's doctrine of the synthetic a priori. What Reichenbach's 
move does is to take this crutch away. The full blown geometric conventionalism that comes out of 
Reichenbach now leaves geometry on a purely relativistic footing. There is no deeper truth of mind or 
world underlying our choice of geometric system. We see this choice of geometry as the paramount 
example of the modem conception of mathematical truth. 

We have now obtained the vantage point from which the Escher-like irony may be fully 
appreciated. Henri Poincare formulated his argument for geometric conventionalism as an attempt to save 
Immanuel Kant's picture of mathematical truth from the modem conception. That argument inspired 
Albert Einstein's discovery of the general theory of relativity which adopted the generalized Riemannian 
viewpoint for describing spatio-temporal geometry. In searching for an epistemological foundation that 
could support the weight of this new theory, Hans Reichenbach pulled out Poincare's argument for 
geometric conventionalism. But in so doing, Reichenbach enthroned the modem view, supplanting the 
Kantian view for good with the very argument that had initially been designed to save it. Like the red ants 
crawling in Escher's Mobius Strip, sometimes if you follow one side out far enough you end up on exactly 
the other side. 
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