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Abstract 

In this paper, we present an approach to the construction of perfect and non-perfect colorings resulting from plane 
crystallographic groups. In particular, we consider colored patterns that arise with symmetry group normal in the 
symmetry group of the uncolored pattern. 
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Introduction 

In the theory of color symmetry, one problem of interest is the study and analysis of colored symmetrical 
patterns. There are two types of colorings of a symmetrical pattern. If G is the symmetry group of the pattern 
with the colors disregarded, the pattern is said to be perfectly colored if every element of G affects a 
permutation of the colors of the pattern. In those instances when not all elements of G permute the colors of 
the pattern, we obtain a non-perfectly colored pattern. 

To illustrate these two types of colorings, let us consider the colored patterns appearing in Figure 1 which 
are assumed to repeat over the entire plane. For both, the symmetry group G of the patterns with the colors 
disregarded is the plane crystallographic group p6m generated by the 60·counterclockwise rotation r about the 
indicated point p, the reflection s in the horizontal line through p and the translations x,y. (see Figure 3). The 
pattern in Figure l(a) is perfectly colored since every element of G affects a permutation of the colors. On the 
other hand, the pattern appearing in Figure 1 (b) is not perfectly colored since there are elements· of G that do 
not permute the colors. For instance, applying the reflection s will send the color grey to the colors black and 
white. In fact, for this colored pattern, the elements of G permuting the colors belong to the set generated by r, 
x and y which form a subgroup of G of plane crystallographic type p6. 
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1(a) 1(b) 

Figure 1: l(a) perfectly-colored pattern; l(b) non-perfectly-colored pattern 

The purpose of this note is to illustrate the construction of colored plane crystallographic patterns, which 
include the perfectly and non-perfectly colored ones. The approach we consider here is based on a framework 
for analyzing colored symmetrical patterns which was discussed in detail in [1] and [2]. 

Preliminaries 

Let us now describe the setting in which we will work with colorings. Let G be the symmetry group of an 
uncolored pattern where G is a plane crystallographic group or a subgroup of a plane crystallographic group. 
By a plane crystallographic group we refer to the group of isometries of the Euclidean plane whose 
translations form a subgroup which is a free abelian group of rank two. A subgroup of a plane crystallographic 
group is either a plane crystallographic group, a frieze group or a finite group which is cyclic or dihedral. A 
frieze group is a group of isometries of the Euclidean plane whose translations from a subgroup which is an 
infinite cyclic group. Now consider a subset S of a fundamental domain for G. The set {g(S) : g E G} is 
called the G-orbit of S. Our assumption is that the given pattern can be obtained as the G-orbit of some subset 
S of a fundamental domain for G. This G-orbit of Sand G are in one-to-one correspondence under the rule 
g(S) +-+ g for each g E G, so that each element of the G-orbit may be labeled by each element of G. By 
assigning a color to each element of G, we assign a color to each set g(S). This assignment of colors is called a 
coloring of the pattern. This results in a partition P of G where a set in P consists of elements assigned the 
same color so that a coloring is simply a partition of G. 

To illustrate the above concept of a coloring let us consider the uncolored pattern V appearing in Figure 
2(a) which has symmetry group G = D6 = {e,a,a2,a3,a4,as,b,ab,a2b,a3b,a4b,a5b} where a is a 
60°-counterclockwise rotation about the center of the hexagon and b is a reflection in the horizontal line 
through the center of the hexagon. If S is the triangular region labeled "e" in Figure 2(b) then for each g E G, 
the triangular region g(S) is labeled "g". Given the following partition of G, {e,b,aS,a3b,a3,a4b} and 
{a,a2,a4,ab,a2b,aSb} to which we assign the colors black and white respectively, we obtain the non-perfect 
coloring in Figure 2( c). 
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(a) (b) 
(c) 

Figure 2: 2(a) uncolored pattern Vwith symmetry group D6; 2(b) the labelled triangular regions; 
2(c) a non-perfect coloring of V 

In the analysis of a coloring, three groups playa significant role. These groups are: 

G = the symmetry group ofthe uncolored pattern 
H = the subgroup of elements of G which permute the colors 
K = the subgroup of elements of G which fix the colors 

We will refer to H as the subgroup of color transformations and K as the symmetry group of the colored 
pattern. The groups G, Hand K are such that K ~ H ~ G. Ifa group G permutes the colors of the pattern, that 
is H.= G, then the coloring is perfect. Given a color, its stabilizer in G will lie between Hand K. Since H acts 
on the set C of colors of the pattern, this action induces a homomorphismf: H -+ A(C), where A(C) is the 
group of permutations of the set C of colors of the pattern. For h E H, f(h) is the permutation of the colors 
that h induces. An element h is in the kernel off if and only iff(h) is the identity permutation, that is, h fixes 
all the colors. Thus the kernel offis K and the resulting group of color permutationsf(h) is isomorphic to HIK. 
Consequently, K is a normal subgroup of H. 

If we treat a coloring as a partition P = {Pi: i E I} of a group G, then H = {g E. G : ('V 
i E /)(3j E J)(gPi = Pj)} and K = {g E G : ('Vi E /)(gPi = Pi)}. 

Enumerating Colorings associated with Plane Crystallographic Patterns 

In [1] and [2], a framework was presented for analyzing colored symmetical patterns. Moreover, the 
framework allowed for the listing of colorings for an uncolored pattern with symmetry group G and subgroups 
H, K of G such that K ~ H ~ No(K), where the elements of H permute the colors and the elements of K fix 
the colors. In this note, we will adapt this framework to give rise to our construction of colored plane 
crystallographic patterns.Before we proceed to present our main results, we mention the highlights discussed 
previously in [1] and [2] which are important points for consideration. These concepts form the basis for the 
method used in coloring symmetrical patterns. 

The assumptions we are to consider in determining colorings will be as follows. Let G be a group and H a 
subgroup of G. Let P be a partition of G. Since a partition of G corresponds to a coloring, we refer to P as the 
set of colors. 

Definition 1. Let G be a group, H ~ G, Ya complete set of right coset representatives of H in G, U Y i a 
iel 

decomposition ofY and for each i E I, J i ~ H. Then the coloring or decomposition G = U U hJjYI or the 
lei heR 
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partition of G ,P = {hJ;Y; : i E I,h E 11} is called a (Y;,J; )-H coloring. 

Lemma 2. A (Y;,JI )-H coloring ofG defines an H-invariant partition ofG. 

Remark 3. Also, if K :s; G such that H:S; Na(K) and K :s; J; for each i, then the elements of K fix each of 
the sets hJl Y; because if k E K then khJ; Y; = hk* J; Y; = hJ; Y;. 

Lemma 4. If P = {Pi : i E l} is a G -invariant partition of the group G, then P is the partition of G 
consisting of left cosets of some subgroup S of G. This subgroup is the set in the partition containing e. 
Moreover, the subgroup of elements ofGfixing P = {Pi : i E l} is core as. 

Lemma 5. Let G be a group, X a non-empty subset ofG and K a subgroup ofG. Then leX = Xfor all k in 
Kif and only if X is a union of right cosets of Kin G. 

Theorem 6. Let G be a group and H a subgroup of G~ If P is an H-invariant partition of G then P 
corresponds to a decomposition of G in the form G =U U hJl Y; where U Y; = Y is a complete set of right 

;e/heH Ie/ 

coset representatives of H in G and J; :s; H for every i E 1. If in addition K :s; Hand K fIXes the elements of P, 
then K :s; J; for every i E 1. 

The above theorem characterizes all partitions of a group G which are invariant under multiplication on 
the left by elements of a subgroup H of G and whose elements are left fixed by multiplication on the left by 
elements of a subgroup K of H. It should be mentioned that distinct complete sets of coset representatives of H 
in G may give rise to the same partition. This situation was discussed in [1]. 

For our main results in this paper, we will determine the H-invariant partitions that arise from a given 
plane crystallographic group G which is the symmetry group of an uncolored pattern where the elements of K 
fix the colors such that K :s; H:S; Na(K) and K is a normal subgroup of G. 

The assumption regarding the normality condition imposed on the subgroup K of G allows us to form the 
quotient group of G by K, denoted by GIK from which helpful information can be obtained in characterizing 
the colorings arising from G. It turns out that the construction of the perfect and non-perfect colorings 
associated with the given groups G, H and K is influenced by the group structure of GI K , for instance whether 
it is cyclic or dihedral. 

A certain number of the colorings which are non-perfect may be considered equivalent. To determine if 
two colorings corresponding to two different partitions of G are equivalent we use the following definition. 

Definition 7. Consider the partitions P,Q of a group G which correspond to colorings C and C' 
respectively. The colorings C and C' are equivalent if and only if there exists a g E G such that Q = gPo 

We now give our main results below. We consider the particular cases when [G : HJ = 2,3, or 4 and GIK 
is cyclic or dihedral of at most twelve elements. 

Theorem 8. Let G be a plane crystallographic group and H, K:S; G where K is normal in G. Let G = U 
;el 

U hJlYI be a (Y;,JI ) - H coloring satisfying Theorem 6. There are four perfect and four non-perfect such 
heR 
colorings that arise if GIK is the cyclic group of order 6, denoted by Z6 and [G : HJ = 2 . Moreover, the 
equivalent non-perfect colorings come in pairs. 

Proof. Let GIK = {K, aK, a2 K, a3 K, a4 K, as K} be the cyclic group Z6 of order 6. The proper subgroups of 
G may be described as HI = K U a2 K U a4 K and H2 = K U a3 K. Since [G : H] = 2, we let H = HI. Under 
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the action of H on the set of right cosets of K in G, K\G, by left multiplicatitJn we get two orbits of right 
cosets, {K,Ka2,Ka4 } and {Ka,Ka3,KaS}. Note that K is normal in G, so that every left coset is a right coset 
ofG. Using Theorem 6 we obtain Table 1 where the colors 1,2, ... ,6 are assigned to the right cosets of Kin G. 
There are 8 (J;, Y;) - HI colorings obtained. 

H Ha 

K Ka2 Ka4 Ka Ka3 Kas J; and Y; used 

CI 1 1 1 1 1 1 J I =H; G 

YI = {e,a} 

C2 1 1 1 2 2 2 J I =J2 = H HI 

YI = {e};Y2 = {a} 

C3 1 1 1 2 3 4 JI =H;h =K; N-PC 

YI = {e}; Y2 = {a} 

C4 1 2 3 4 4 4 J I =K;h =H; N-PC 

YI = {e}; Y2 = {a} 

Cs 1 2 3 4 5 6 JI =J2 = K; K 

YI = {e}; Y2 = {a} 

C6 1 2 3 2 3 1 J I =K; N-PC 

YI = {e,a S } 

C7 1 2 3 3 1 2 JI = K; H2 

YI = {e,a3} 

Cs 1 2 ·3 1 2 3 JI = K; N-PC 

YI = {e,a} 

Table 1 

From Lemma 4, the perfect colorings turn out to be colorings using left cosets of a subgroup S ofG. 
K ~ S ~ G. As seen in Table 1 there are four perfect polorings,CJ, C2,CS and C7(The corresponding Sfor 
each coloring is given in the last column). The remaining four colorings, C3, C4, C6 and Cs are 
non-perfect(N-PC). Let us consider C3, which is associated with the partition P ofG, P = PI U P2 U P3 UP 4 

where PI = KU Ka2 U Ka\ P2 = Ka, P3 = Ka3and P4 = Kas. Also consider C4, which is associated with 
the partition Q = QI U Q2 U Q3 U Q4, where QI = K, Q2 = Ka2, Q3 = Ka4 and Q4· = Ka U Ka3 U Kas• Now 
under the element 
a E G,a(PI U P2 U P3 U P4) = aPI U aP2 U aP3 U aP4 = a(KU Ka2 U Ka4) U a(Ka) U a(Ka3) U a(KaS ) = 
(Ka U Ka3 U KaS) U Ka2 U Ka4 UK = Q4 U Q2 U Q3 U QI or aP = Q. Thus by Definition 7, C3 and C4 are 
equivalent colorings. We can also verify that colorings C6 and Cs equivalent. • 

Theorem 9. Let G be a plane crystallographic group and H, K $ G where K is normal in G. Let G = U 
;eJ 

U hl;Y; be a (Y;,J;) - H coloring satisfying Theorem 6.There are six perfect colorings and two non-perfect 
heR 
such colorings that arise ifGIK is the dihedral group of order 6 denoted by D3 and [G : HJ = 2 . Moreover, 
both non-perfect colorings are equivalent. 

Proof. Let GIK = {K,aK,a2K,bK,abK,a2bK} be the dihedral group D3 of order 6. The proper 
subgroups ofG may be described as HI = K U aK U a2 K and H2 = K U bK, H3 = K U abK and 
H4= KU a2bK. Since [G : HJ = 2 we let H = HI.Then the H-orbits are {K,Ka,Ka2} and {Kb,Kab,Ka2b}. 
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Using Theorem 6, we obtain the following color table where the colors 1,2, ... , 6 are given to the right cosets 
of Kin G. 

H Hb 

K Ka Ka2 Kb Kab Ka2b J; and Y; used 

C) 1 1 1 1 1 1 J) =H; G 

Y) = {e,b} 

C2 1 1 1 2 2 2 J) = H;Jz = H; H) 

Y) = {e}; Y2 = {b} 

C3 1 1 1 2 3 4 J) = H;J2 = K; N-PC 

Y) = {e}; Y2 = {b} 

C4 1 2 3 4 4 4 J) = K;J2 =:' H; N-PC 

Y) = {e}; Y2 = {b} 

Cs 1 2 3 4 5 6 J) = K;J2 = K; K 
- Y) = {e}; Y2 = {b} 

C6 1 2 3 2 3 1 J) =K; H4 

Y) = {e,a2b} 

C7 1 2 3 3 1 2 J) =K; H3 

Y) = {e,ab} 

Cg 1 2 3 1 2 3 J) =K; H2 

Y) = {e,b} 

Table 2 

There are six perfect colorings C),C2,CS,C6 , C7 and Cg corresponding to each of the subgroups S ofG, 
K::; S::; G. The two non-perfect colorings, C3 and C4 are equivalent under the element bEG .• 

Remark 10. From Theorems 8 ,and 9 given above we see that although the number of colorings listed are 
the same (since [G : K] = 6 and H/K is Z3 for both cases), the number of perfect/non-perfect colorings vary 
because the quotient group GIK given in Theorem 8 is cyclic while that in Theorem 9 is dihedral. 

We summarize the remaining results of our construction in Table 3. The proofs are omitted and can be 
patterned after that of Theorems 8and 9 above. The color tables for each case can also be constructed by 
means of Theorem 6. The notation in the table below are as follows: by PC we mean perfect colorings, N-PC 
are non-perfect colorings, Zjwe mean the cyclic group of order j, Dk the dihedral group of order 2k, where j,k 
are integers and E is the trivial group containing the identity. 
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Equivalent 

GIK HIK [G: HJ PC N-PC Non-perfect 

1 Z2 E 2 2 - -

2 Z3 E 3 2 3 all 3 

3 Z4 Z2 2 3 4 occur in pairs 

4 Z4 E 4 3 11 4 pairs,last 3 

5 Z6 Z3 2 4 4 occur in pairs 

6 Z6 Z2 3 4 27 occur in 3's 

7 D3 Z3 2 6 2 occur in pairs 

8 D3 Z2 3 6 25 none 

9 Z8 Z4 2 4 12 occur in pairs 

10 Z8 Z2 4 4 158 occur in 4's,last' 2 

11 D4 Z4 2 10 6 occur in pairs 

12 D4 Klein - 4 2 10 26 occur in pairs 

13 D4 Z2 4 10 152 occur in 4's 

14 Z9 Z3 3 3 39 occur in 3's 

15 ZIO Z5 2 4 4 occur in pairs 

16 Z12 Z6 2 6 22 occur in pairs 

17 Z12 Z4 3 6 78 occur in 3's 

18 Z12 Z3 4 6 262 occur in 4' s, last2 

19 D6 Z6 2 16 12 occur in pairs 

20 D6 D3 2 16 38 occur in pairs 

21 D6 Klein - 4 3 16 303 none 

22 D6 Z3 4 16 252 occur in 4's 

Table 3 

We observe that the number of perfect/non-perfect colorings obtained varies depending not only on the 
group structure of GI K but also on that of HI K as well. 

Example 11. We now illustrate Theorem 9 by considering the uncolored pattern U given below whose 

symmetry group G is the plane crystal/ographic group p6m generated by r, s,x,y. 
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Figure 3: uncolored pattern Uwith symmetry group p6m 

Let us choose the subgroups H = ( r2,s,x,y ) and K = ( r2,s,x\xy ) of G which are plane 
crystallographic groups of types p31m and p3ml respectively where K :::s H:::S G and K is normal in G. Note 
that [G : H] = 2 and [H : K] = 3 so that we can write G = HU Hr, H = KU Kx U Kx2 or equivalently, 
G = (KUKxUKx2)U(KUKxUKx2)r. 

Let us first show how we obtain a particular coloring of u. Suppose We consider Jj = K and J2 = K and 
we partition the set of right coset representatives of H in G into Y1 = {e} and Y2 = {r}. We obtain the 
decomposition .. 
G =U U hJ;Y; = U h(KUKr) = (KUKr) Ux(KUKr) Ux2(KUKr) = KUKx UKx2 UKrUKxrUKx2r 

;e/heR heH 
which results in a coloring where all right cosets of KinG are given different colors.lfwe assign the colors 
1,2,3, ... ,6 to K, Kx,Kx2, Kr,Kxr and Kx2r respectively, we obtain the first colored pattern in Figure 4. This 
is a perfect coloring and is the same coloring referred to as C 5 in Table 2. Note that to generate the coloring 
we consider the triangular region colored black in Figure 3 the identity e. 

We also give in Figure 4 the remaining six (Y;,J;) - H colorings ofU corresponding to C2,C3,C4,C6,C7 
and Cs in Table 2. C2,C6, C7 and Cs are also perfect while C3 and C4 are equivalent and non-perfect. Notice 
that the.60· rotation r does not permute the colors in C3 and C4 so that these colorings are indeed 
non-perfect. Moreover, ifwe apply the rotation r to coloring C3, we get coloring C4. In these sense, colorings 
C3 and C4 are equiValent. In the actual colorings, the following shades were used to represent the color 
numbers 1,2,3, ... ,6 in Table 2: 1 - white, 2-black, 3-matte, 4-grey , 5-horizontal stripes and 6-vertical stripes. 
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C5 

C2 C3 

Figure 4: .(Y;,J;) - (r2 ,s,x,y) colorings of U 
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C4 C6 

C7 C8 

Figure 4: (Y;,J;) - (y2,S,x,y) colorings of U (cont.) 
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