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Abstract 

Some mazes are more difficult to 80lve tban odJ.er mazes. For this reason. we develop a method by which the difficulty of a maze 
can be quantified, In the poc:ess we determine a way in \Wich the complexity of the hallways in a maze, which is the degree to 
which a maze has short aod quick twists aod turns. can also be measured. We use the various complexity measures of the 
hallways in a maze in order to calculate the overall complexity and difficulty of the maze. We provide several examples in order 
to help establish some validity of the formulas developed in this paper. As the main tool used in developing our methods is 
continuum theory. we will use appopriate definitions throughout this paper. . 

1. Introduction 

a. b. c. 
Figure 1: Three mazes o/varying difficulty. 

Consider the mazes in figure 1. Of these three mazes, which one is the more challenging? If we can. 
order these mazes according to this criterion, then the possibility of such an ordering of all mazes seems 
plausible. Given two mazes, we say the more "challenging" of the two bas a higher measure of diffiCulty. 
In this paper we will develop a method by which the difficulty of a maze can be measured, and then 
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provide some interesting examples. For this paper we will assume that all mazes can be embedded in the 
plane. 

2. The Graph of a Maze 

A graph is a continuum that can be written as the union of finitely many arcs any two of which are either 
disjoint or intersect only in one or both of their endpoints [2]. Let M be a maze. We want to define a 
function tbat maps the maze M onto a graph. Every hallway of the maze has two walls with a pathway 
between them. Let a be any pointon one wall of a hallway and let b be the point on the other wall nearest 
to a. The line segment connecting a and b is called a pathway perpendicular of the maze. A graph of a 
maze is any graph that lies in the interior of the maze that satisfies the following: 

1) The graph intersects each pathway perpendicular of the maze in the middle half of the 
pathway perpendicular. 

2) No pathway perpendicular of the maze intersects the graph in more than one point. 
Note tbat more than one graph can be derived from any given maze. Unless otherwise specified,· we will 
refer to a graph of a maze simply as a maze. For example, we derive in figure 2 the graph of the maze 
from figure lb. 

maze 1b +- graph of maze 1 b 

Figure 2: Constructing the graph of a maze. 

We will also assume ·tbat every maze contains two points, called the gates, which are 
distinguished from all other points in the graph. Let p and q be the gates of a maze M. Though it may not 
be necessary, it is customary to consider p and q as an ordered pair (p,q). In this case we call the gate p 
the entrance or the start ofM and we call the gate q the exit or theftnish ofM. 

We denote the order of a point x in a maze by ord(x). If e is a point in a maze M'such that 
ord(e) = I then e is called a dead-end of M. Now consider the subset K of M defined by 
K ={peM I ord(p) S2}. The components ofKarecalledhallways. Every point inM-Kis called an 

intersection. We say two hallways 11, and hj are alijacent if and only if there is a point x e M - K such 

that 11, u{x}uhj is a connected set. Ifu and v are intersections or dead-ends such that {u}uhu{v} is 

a connected set then we call u and v the endpoints of h. In this case, the set {u}uhu{v} is called a 
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closed hallway, and is denoted li. A sequence of closed hallways ii;,'Iiz," " ",li" is called a tratl· if and only 
if h, is adjacent to h'+1 whenever 1 SiS n -1 . A loop is defined to be any trail that satisfies either of the 
following two conditions: 

1) The trail consists of one hallway and the two endpoints of the hallway are the same point. 
2) The trail consists of more than one hallway and each endpoint of each hallway in the trail is 

also an endpoint of exactly one other hallway in the trail. 
We will assume throughout the rest of this paper that no maze contains a loop. 

A simple trail is a trail in which no hallway is repeated. A reduced tratl is a simple trail in which 
no intersection is repeated. Since we are not allowing mazes to have loops, then a trail is simple if and 
only ifit is reduced (try proving this). A solution of a maze is any reduced trail whose endpoints are the 
gates of the maze. A maze is said to be well-constructed if it has exactly one solution. Again, since we 
are not allowing loops, then throughout the rest of this paper all mazes will be well-constructed. Note that 
solving a maze requires selecting the correct direction to travel at each intersection. However, if a maze 
has no loops, as the mazes that we are considering, then taking the "immediate left" direction at each 
intersection and reversing direction at each dead-end will always provide a trail (not necessarily a simple 
trail) from the start to the finish. Clearly, this trail will contain the solution of the maze. 

Let M be a maze and suppose that the trail T c: M is the solution of the maze. Let 

I = {VI' v2 '" " ", V n} be the set of intersections located on T. Then any component of M - T is called a 
branch of the maze. Each branch inM is connected to T by a point in 1. 

3. The Complexity Measure of a Hallway 

a. b. c. 
Figure 3: Three hallways o/varying complexity. 

Consider the three hallways in figure 3. As it is possible to order these hallways by how "complicated" or 
"confusing" each of these hallways are we want to develop a method by which we could order all 
hallways accordingly. Given two mazes, we say the more "complicated" of the two has a higher measure 
of complexity. It appears that the more quickly a hallway alters its direction the higher the measure of its 
complexity, or the more complex the hallway becomes. Therefore, the measure of the complexity of a 
hallway will depend on the magnitude of its direction changes and on how "quickly" it changes direction. 
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Let h be a hallway with endpoints u and v. Since h is connected and every point in h is of order 2 
then h is homeomorphic to an arc. So let h have arclength D(h) and let I,. : [0, 1] -+]R2 be a continuous 

function from the unit interval onto h such that I,. (0) = u, I,. (1) = v and such that I" (t) is the point on 

h where the arclength of the subarc of h with endpoints u and I,,(t) bas length tD(h). Note that 

4f" I dt * ° Oll [0,1]. Now, the derivative 4f" I dt evaluated at t = to is the velocity vector of I" at 

t = to' If we view the hallway h as the path of a particle moving from u to v, then the velocity vector at 

t = to points in lite direction that the particle is moving at time to' For all t E [0,1] define V+ (t) to 

equal the one-sided derivative of I" from the right of t and V_ (t) to equal the one-sided derivative of I,. 
from the left of t. For all values of t E (0,1) for which it exists, define V(t) = dj" I dt = ~ (t) = V_ (t) . 

v 

v-
Figure 4: A. hallway and various direction ve.ctors V± (t) 

We will construct a subset w,. of points belonging to h. If it exists, let tl E (0,1] be the smallest 

value of t such that the direction of V±(tl ) differs from the direction of V+(O) by at least tr/4. Let 

WI = l,.(tl)E w,.. We call the direction of V+(O) the previous direction relative to WI' Define P(wI ) 

to be equal to the absolute value of the difference in the radian measures between the directions of V_ (tl ) 

and V+(tl). That is, P(wI ) = ltan-I (V_(tl»-tan-I(~(t2»I. If P(wI ) < tr , then we say that the 
. 4 

current direction at WI is the direction of Y.. (tl)' Otherwise, we say that the current direction at WI is 

the direction of V+(tl ). If it exists, let t2 E (tl,l] be the smallest value of t such that the direction of 

V± (t2 ) differs from the current direction at WI by at least tr /4. Let W 2 = I" (t2 ) E W" . We call the 

current direction at w; the previous direction relative to w2 • Define P(w2 ) to be equal to the absolute 

value of the difference in the radian measures between the directions of V_(t2) and V+(t2)' If 

P(w2) <: ' then we say that the current direction at w2 is the direction of Y..(t2). Otherwise, we say 

that the current direction at w2 is the direction of V+(t2). Inductively, once WI 'W2 ' ... , w" have been 

selected, let wn+J = I,. (tn+l) be the point on h between w" and" where tn+1 is the smallest value in 

(t",I] such that the direction of ~(tn+l) differs from the current directi()n at w" by at least tr/4. 

Define lJ(w,) to be equal to the absolute value of the difference in the radian measures between 

thedirectionsofV(t,) and V(tl+1). That is, P(w,)=ltan-I(V(t,»-tan-1 (V(tl+1»I. Roughly, () isa 

function (): w,. -+ (O,tr) that measures the overall change in direction of hash crosses each point in 
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w". Denote the arc length of h between wi-\ and Wi in w" by. d(w,). We denote the arc length of h by 

D(h). 
Suppose h is a hallway and that w" = {WI' wz, ••• , wn}. The more extreme each tum is at each 

point w" the more complex h is. That is, the larger the value of each 9(w,) , the more complex h is. 

Therefore, the complexity of h increases as each value of 9(wj) increases. Also, the shorter each subset 

of h is between points in w,., the more complex h is. That is, the smaller the value of each d(w,) , the 

more complex h is. Therefore, the complexity of h increases as each value of _1_ increases. What 
. d(w,) 

makes a hallway most complex is when both 9(w,) and _1_ are simultaneously large. Finally, the 
d(w,) 

longer the entire hallway, the more complex it is, so that the complexity of h increases as D(h) increases. 
For these reasons, we define the complexity y(h) of h from endpoint u to endpoint v by 

y(h):::D(h)"i 8(w,) . (I) 
j=1 d(wj )·1[ 

We divide by 1t to simplify the value. Also note that since the units of distance appear in both the 
numerator and the denominator, then r(h) is independent of the unit measurement of length. The 
hallways in figures 3a, 3b and 3c have complexities of 0, 138 and 2432, respectively. 

4. The Complexity and Difficulty Measures· of a Maze 

Let M be a maze. Let T be the solution of the maze and suppose B = {~, liz, ... , hn } is the set of all 
hallways in some branch ofM. We define the complexity y(B) of B by 

n 

y(B) = Ly(hi ) (2) 
'=1 

where y(h,) is the complexity of hi from u to v where u lies between T and v. 

Suppose K = {BI , Bz, ••• , Bn} is the set of branches in a maze M with solution T. We define the 
complexity y(M) ofMby 

r(M) = log [r(T) + t,r(~)] (3) 

where y(l) is the complexity of T eM from start to finish and y(Bi ) is the complexity of branch Bj • 

The mazes in figures Ia, Ib and lc have complexities of3.3, 3~1 and 3.4, respectively. 
Note that the complexity measure of a maze M is an intrinsic measure. That is, in order to 

calculate y(M), we need to know the solution T so that we can calculate the value of y(1). It is possible to 
approximate y(M) very well by an extrinsic form of (3) that does not require knowing T. Suppose that 
B = {II., liz,·.·, hn} is the set of all hallways in a maze M Then 

r(M) .. log [ t,r(h.) ] 

where y(hj ) is the complexity of ~ from one endpoint to the other endpoint. 

Let the maze M have a solution T. If T has a small complexity, but also has many branches of 
large complexity, then y(M) would be large, but the maze would be easy to solve. If instead of adding the 
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terms in (3) above, we were to mUltiply them, then we would arrive at a measure that seems to better 
describe the difficulty of a maze than the complexity measure. We add 1 to the complexity measure of 
each branch so that a single branch of some complexity less than one will not lower the overall 
complexity of a maze. That is, we define the difficulty measure 6(M) of Mby . 

6(M) = log [y(T) 0 (r(B,) + I) 1 (4) 

The mazes in figures la, Ib and lc have difficulty measures of 3.3, 12.5 and 14.7, respectively. 
Note that we have defined the complexity and the difficulty of a maze while using the term 

"maze" to actually mean "graph of a maze" .. Recall that an actual maze can be associated with more than 
one graph. Given an actual maze M, suppose that G is the collection of all graphs that can be associated 
with M Then we define y(M) and ~(M) to equal the infimum of y(g) and the infimum of ~(g), 

respectively, as g varies over every graph in G. That is, y(M) = inf y(g) and 6(M) = inf 6(g). Thus, 
. geG geG 

we may not be able to practically calculate the complexity and difficulty of a maze, but we can calculate a 
reasonable upper bound for these measures. 

Suppose that the points in w,. are selected so that the current direction at each Wi E w,. differs 

from the previous direction relative to Wi by say 7t instead of 7t. It is an open question of determining 
·84 

precisely how the complexity measure of a maze will be altered. Another open problem would be to 
determine whether it is possible to construct a maze-generation algorithm that, given values )' and ~, 
yields a maze with complexity )' and difficulty~. It is further unknown whether there is a maze that can 
be drawn in a finite space that has an infinite measure of complexity or an infinite measure of difficulty. 
Finally, for a maze M, note that ~(M) is an intrinsic measure, as is y(M). We are unsure if there is any 
way to approximate ~ extrilISically, as we can y(M). 

Now we will provide some examples of mazes along with upper bounds of their associated 
measures of complexity and measures of difficulty. It should be evident that these measures do a pretty 
good job of· identifying the complexity of a maze as well as predicting the difficulty of the maze. It 
should also be fun testing the validity of the measure of difficulty as defined in this paper. 
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