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An infinite number of periodic trajectories are derived for the logistic equation of dynamic systems theory at a 
value of the parameter corresponding to the extreme point on the real axis of the Mandelbrot set. Beginning 
with the edge of a family of star n-gons as the seed, the trajectory of the logistic map cycles through a sequence 
of edges of other star n-gons. Each n-gon for n odd is shown to have its own characteristic cycle length. The 
logistic map is shown to be the first of two infinite families of maps, all exhibiting periodic trajectories, derived 
from two families of polynomials, the Chebyshev polynomials and another related to the Lucas sequence. 
These dynamics are shown to be closely related to properties of number. 

1. Introduction. 

This paper describes a remarkable connection between the edges of star polygons and dynamical systems 
in the state of chaos. A sequence of dynamical maps are derived from the Chebyshev polynomials and 
another family of polynomials related to the Lucas series, and these maps exhibit periodic trajectories of 
all lengths with each polygon having its own characteristic cycle length. The first polynomial of the 
family is the logistic equation at a value of its parameter corresponding to the extreme left-hand point on 
the real axis of the Mandelbrot set. This leads to new connections between chaotic dynamics and both 
Euclidean geometry and the theory of numbers,-

2. Star Polygons . 

Consider the polynomial equation t' = I for z complex. The solutions are , 

21Ck ., 21Ck -21fki 
z = COS---ISlll-- = e n for k = 0,1,2,3, ... ,n-1 (I) 

n n 
referred to as the n-th roots o/unity. The points in a cartesian coordinate system, 

21Ck . 21Ck 
(cos-, - Slll-) for k = 0,1,2,3, ... ,n-1 (2) 

n n 

lie at the vertices of a regular n-gon with unit radius that we shall refer to as a cyclotomic n-gon. 
point (1,0) is distinguished, the other points satisfy the equation, 

xn -1 = xn-1 + xn-2 + ... + x3 + x 2 + X + 1 = 0 
x-I 

(3) 

If the 
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referred to as the nth cyclotomic polynomial when n is prime. We shall continue to use this terminology 
for n non-prime but odd. . 

Consider the transformation: 

(4) 

This transformation has the effect of rotating z clockwise by 8 degrees, i.e., arg z- arg Z - 8. If Zo is 
taken as the seed of this transformation, then, Zo - Z 1 - Z 2 - ••• -z k - ••• where the sequence of points, 
{Zk} for k = 0,1,2, ... is the trajectory of the transformation. 

Let 8 = 2nm for m and n relatively prime integers, and take the seed value to be Zo = 1, 
n 

i.e., k = 0, then the trajectory forms a modular system with indices mk(mod n) and principal values 

O,I,2, ... ,n-1. The vectors e!m) = z!~: - z!m) represent the directed edges from vertex Zk to Zk+l and the 

system of edges, e !m) for k = 0, 1,2, ... ,n-l are the edges of a regular star polygon symbolized by {n/m}. 

n-l 
The star polygons {nil} are denoted simply as {n} and represent regular n-gons. For ° < m ~ L - J 

2 

the edges in the cycle are clockwise and have positive lengths. For L n ~ 1 J ~ m < n, the stars are 

counterclockwise or retrograde and have negative edge lengths. If the star n-gon {nlm} has an edge cycle 

oriented clockwise then {nlm-m} has retrograde edges of the same length, i.e., e !n-m) = -e !m) . The three 

positively oriented star 7-gons are shown in Figure 1. 

{7/1}. {7} {712} {713} 

Figure 1: The three positively oriented 7-gons. 

If nand m are not relatively prime, then nlm = plq in lowest terms and {n/m} reduces to the star p-gon 
{p/q}. The case of the six positively oriented star polygons {121m} for m = 1,2, ... ,6 are shown in Figure 
2. Only m = 1 and 5 correspond to star 12-gons; {t2l3} = {4} is a square while {1214} = {3} an 
equilateral triangle, and {1216} = {2} a digon (a degenerate case of a polygon). 
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{12fl} .. {12} {1212}" {6} {1213}. {4} 

{12f4}" {3} 
{l2fS} 

{12l6} iii {2} 

Figure 2: Thefamily of star 12-gons. Only {12} and {12/5} are star 12-gons. 
The star polygons (12/3) =:(4) is a 4-gon, {12/4} =:(3) is a 3-gon, 

and {12/6} =: (2) is a digon. 

The star polygons corresponding to n and all of its factors constitute a family of star n-gons. In 
general, n star polygons are related to any n-gon if the digon {2} and the polygon with a single vertex {I} 
are included. This follows from the property of numbers that, 

I,cp(k) =n, 

where the summation is over all of the factors k of n . t/J (k) is the Euler phi-function which equals the 
number of integers relatively prime to and. not greater than k. For example, the family of star 12-gons is 
represented by the factor tree, 

where t/J(l) = 1, t/J(2) = 1, t/J(3) = 2, t/J(4) = 2, t/J(6) = 2, t/J(12) = 4 with a sum of 12. 
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3. p-Cycles 

Consider the (complex) transformation Z -+ Z m restricted to the unit circle SI which can be denoted by 

Pm : eiB ~ eimB . Observe that this map takes Rez = cos 9 into Rez m = cosm9. This is the defming 

property of the Chebyshev polynomials Tm , viz., 

(5a) 

In dynamical system terms, there is a semi-conjugacy (see Appendix A) lLr: SI ~ [-1,1] defined by, 

1Lr (e iB ) = cos9 (5b) 

from the map Pm : Sl ~ Sl to the map Tm : [-1,1] ~ [-1,1], x ~ Tm(x). It should be noted that 

much of what we discuss in the sequel can be inferred from this semi-conjugacy. 
I 

Beginning with the seed Re Zo where Zo = eiBo , 

Re Z 0 -+ Re ZI -+ Re Z2 -+ ••• -+ Re Z k -+ ••• 

where the sequence {Re Zk} forZk = eimlBo is the trajectory of Tm. 

211iml 
2n -

If 90 = -, then Zk = e n Since cos(-8) = cos8, Re zp = Re Zo when p is the smallest positive 
n 

integer such that, 

m P == ±l(modn). (6) 

In this case the trajectory forms a cycle of length p, or what we shall refer to as a p-cycle. Since 

(m P )2 = (m 2 y, Equation 6 is equivalent to 

(7) 

n-I n-1 
If n is a prime number, then (m 2 ) T == l(modn) so that p must be a factor of -- [1]. If n is odd 

2 

but not prime, then n -1 is replaced by ¢( n -1) + I where tfJ(k) is the Euler phi-function. Table I shows 
2 2 

the values ofp for m2 = 4, 9,16 and 25 and n = 7, 9,11, 13, 15, and 17. 
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Table 1. Exponents p such that (m2y == l(modn) 

m2 n=7 n=9 n= 11 n= 13 n=15 n=17 
4 3 3 5 6 4 4 
9 3 ... 5 3 ... 8 
16 3 3 5 3 2 2 
25 3 3 5 2 ... 8 

4. Polygons and Chaos 

For k and n relatively prime integers and n odd, given a value of k = 0,1,2, ... , n -1 , it can be shown 
2 

2n-l 
that there exists a value of j = 0,1,2, ... , L --J such that, 

2 

2 cos 21Ck == 2 sin 21Cj 
n 2n 

(8) 

for j and n relatively prime (e.g.,j cannot be even). The values, 2sin 21Cj , are the edge lengths of either 
2n 

of the star 2n-gons {2n(j} or {2n12n-j} depending on their signs [2]. Therefore we can view the p-cycles 
of the previous section corresponding to an n-cyclotomic polynomial as being a sequence of edges of star 
2n-gons. 

This encourages us to consider the transformation of the circle of radius 2, S ~, defined by, 

This map takes 2 Re z = 2 cos 9 into 2 Re z m = 2 cos m9, which is also the defming property of the 

Lucas polynomials [3], 

Lm (2cos9) = 2cosm9. (9a) 

In other words, the maps 2z ~ 2zm restricted to S~ are semi-conjugate (see Appendix A) to the Lucas 

polynomials {Lm} for m ~ 1 via the map 

'8 hL (2e' ) = 2cos9. (9b) 

This has some interesting dynamical consequences. 
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Letting x = cos 8, as the result of Equations 5b and 9b, ! Lm(2x) = Tm(x) and transformations 5a and 
2 

9a can be rewritten as, 

x ~ Tm (x) and 2x ~ Lm (2x) (lOa and b) 

where the first few Chebyshev and Lucas polynomials are listed in Table 2, 

Table 2. The Lucas and Chebyshev Polynomials 

Ll x 1 Tl X 1 

LJ. x2_2 3 T2 2x2 - 1 3 

LJ ~-3x 4 T3 4~- 3x 7 
L, x4_4~+ 2 7 T4 8x4 - 8x2 +' 1 17 
Ls ~_5X3+ 5x 11 Ts 16xs - 20x3 + 5x 41 

4. x6 _ 6x4 _ 9x2 - 2 18 T6 32x6 - 48x4 + 18x2 - 1 99 
L, x7 _ 7~ + 14x3 - 7x 29 T7 64x7 -112xs + 56x3 -7x 239 

Notice that, ignoring signs, a coefficient S; in row R and column C of Table 2 is given by the recursion 

relation, S 7+1 = S 7~: + S 7 for the coefficients of the Lucas polynomials and S 7+1 = s 7~: + 2S 7 for the 

, coefficients of the Chebyshev polynomials. Also note that, ignoring signs, the sum of the coefficients of 
the Lucas polynomials form the Lucas sequence {lk}: 1 3 7 11 18 29 ... which satisfies the recursion 
relation: an+2 = an+l + an ,i.e., it is a Fibonacci sequence beginning with 1,3. On the other hand the 
Chebyshev polynomials form the Chebyshev sequence (T-sequence) {tk}: 1 3 7 17 41 99 239 ... 
which satisfies the recursion relation: a n+2 = 2 a n+l + a no i.e., a Pell sequence beginning with 1,3. The 
standard Fibonacci sequence (F-sequence) {Ii} is: 1 2 3 5 8 13 21 ... and I k = It-I + f k+l while the 
standard Pell sequence (P-sequence) {pJ is : 1 2 5 12 29 70 ... and t k = P k-l + Pk+l' Also, 

and 

1+../5 r;; I I . 
where 'fl = and 'f2 = 1 +,,2. Also 'fl -- = 1 and 'f2 -- = 2 . For thIS reason 

2 ~ ~ 
'fl and 'f2 are referred to as the golden and silver means respectively. 

Consider the second Lucas polynomial L2, x2 - 2 and its iterative map, 

(lla) 

also known as the logistic map. It represents the extreme left-hand point on the real axis, i.e., 
c = -2, of the Mandelbrot set (see Figure 3) for the map, 

(11b) 
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where c is a complex number. The arrow notation in Equation 11 means that we choose a seed value Xo 

and place it into the polynomial to get Xl. From Xl we get X20 etc. and in this way generate the sequence 
Xo, XI. X20 ••• , the trajectory of the map. 

The map given by Equation 11a is a transformed version of the logistic map 

x ~ Ax(l-x) for A.= 4 (12) 

which has been studied in great detail [4], [5]. The fact that c = -2 in Equation lIb, means that this map 
is in a state of chaos. It can be shown that for values of A.< 4 (or c > -2) all points on the unit interval are 
"imprisoned" in the sense that their trajectories remain in the unit interval [1,0] for Equation 12 or for 
values of c corresponding to A. in Equation 11a, the trajectories remain on the interval [-1V2,A/2]. 
However, beginning at A. = 4 (or c = -2), orbits can escape; in fact the only imprisoned orbits lie on a 
Cantor set within the unit interval [0,1]. For any complex value of c, the boundary in the complex plane 
of the prisoner set is what is called the Julia set. Therefore, the Julia sets for real values c S -2 are what 
we refer to as "Cantor dusts." 

Figure 3: The Mandelbrot set. 

The theory of dynamical system shows that as A. is increased to the Feigenbaum limit 3.569 ... the 
trajectories of the system go through period doubling bifurcations, i.e., cycles of length 2/1 for n = 1,2,3, ... 
At the value 3.831 ... a trajectory with a cycle of length 3 appears, after which periods of every length are 
present according to the theorem of Sharkovskii. As a result of our analysis when A. is further increased to 
a value of 4, or alternatively c is decreased to c =-2, the cycles can be characterized as edges of star 2n­
gons for n odd in which each value of n has its own characteristic cycle length. Therefore, in a sense, the 
edges can be thought to dance about on the grains of a Cantor dust. 
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4. Results 

For any value of m the T m and Lm transformations defined by Equation 10 result in p-cyc1es, 
some of which are listed in Table 1, of semi-edges and edges, respectively, of star 2n-gons. We 
shall study the dynamics of the logistic map of Equation lla corresponding to m = 2, in some detail 
giving the results of the p-cycles for cyclotomic n-gons where n = 7,9, 11, 13, and 17. 

For the cyclotomic 7-gon, values of 2cos 2~ for k = 1,2,3 are listed in Table 3 along with the values 

ofj for which 2sin 1Cj = 2cos 21lk (ignoring signs). In other words, a given value of k corresponds to 
14 7 

the edge of the {14/j} star 14-gon. Also listed in Table 3 is the actual edge corresponding to k taking into 

account its sign. For example, 2cos 21lk = -0.44509 ... for k = 2 which corresponds to - 2 sin 1Cj for 
7 . 14 

j = 1. Therefore, this represents the edge of the {14113} species of retrograde star 14-gon. 

IT Xo = 2cos 21C is taken to be the seed of Transformation lla, then we find the remarkable result that, 
7 

the iterates are the sequence of edge lengths of different species of star 14-gons, 
21lk 

2cos- for k = 1,2,4,8, ... (mod 7), (13) 
7 . 

and since 8 == 1 (mod 7) the sequence repeats with the 3-cycle, 

Xo -+ Xl -+ X2 -+ Xo, or 

21C 41C 81C 
2cos- = 1.2469 ... -+ 2cos-= -0.44509 ... -+ 2cos- = -1.80189 ... 

7 7 7 

21C(n - k) 21lk . . . 
As a result of the, fact that cos =COS--, posItIve and negatIve values of the edges 

n 7 
corresponding to k (mod n) are identical. As a result, 4 == -3 (mod 7) which corresponds in Sequence 13 
to k = 3, and so the 3-cycle is represented by the k-values 1-+2-+3-+1... in Table 3 and therefore by the 
sequences of edges j: 3-+ 13-+9-+3. .. The orders of the edges in the cycles are also indicated in Table 3, 
beginning with the seed i = 0 and in Figure 4 by the boxed integers. These edges are shown in Figure 4 
drawn from vertex number 0 of the 14-gon to the darkened vertexj. Notice the regular skip pattern of 
highlighted vertices: 4, 4, 6. We shall fmd this pattern to hold for all cycles. Also note that for each 
cycle, its mirror image, illustrated by open vertices, within the 2n-gon is also a cycle, e.g., 
11-+ 1-+5-+ 11 ... is another 3-cycle for the cyclotomic 7 -gon. Each cycle of a cyclotomic n-gon will have 
a corresponding mirror image cycle. Finally, Adamson has discovered that the product of the cycle 
values equals -1, e.g., 

(1.2469 ... )( -0.44509 ... )(1.80189 ... ) = -1, 

and that the product of edges within any cycle will always equal ±1 for m = 2, a result that can be proven 
from a dynamic/number theoretic description. 
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o 

11 

10 

7 

Figure 4: The points k shown with closed circles within the following 14-gon 
represent the edge-lengths from point 0 to point k of the star 14-gon {14/k}. 

These are elements of the trajectories of the logistic equation corresponding to 
that 14-gon. The open circles represent the mirror image trajectory. The 

numbers in square boxes are the order of the points in the trajectory. 

Table 3 Cycles for the Logistic Equation Corresponding to Cyclotomic Polygons. 

,;yc otOITIlC - on C 1 . 7 ,;yc otOITIlC -gon C 1 . 9 

K 2nk 
2cos- 2sin 1rj 

{ 14tj} Order 2nk 
2cos- 2sin 1rj 

{ 14tj} 

7 14 9 18 

1 1.24696 ... 3 3 0 1.53208 ... 5 5 
2 -0.44509 ... 1 13 1 0.34729 ... 1 1 
3 -1.80189 ... 5 9 2 -0.500 ... ... ... 
4 -1.87938 ... 7 11 

Cyc otOITIlC 1 '11 -gon ;YC otOITIlC -lOn C 1 . 17 
K 2nk 2sin 1rj 

{ 14tj} Order 2nk 
2sin 1rj 

{34tj} 
2cos- j I 2cos- j 11 22 17 34 

1 1.68250 ... 7 7 0 1.8649 ... 13 13 
2 0.83082 ... 3 3 1 1.4780 ... 9 9 
3 -0.28462 ... 1 21 3 0.89147 5 5 

Order 
1 

0 
1 
... 
2 

Order 
1 

0 
1 
0' 
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4 -1.30972 ... 5 17 2 0.1845 ... 1 1 2 
5 -1.91898 ... 9 13 4 -0.5473 ... 3 31 2' 
6 -1.205 7 27 l' 
7 -1.70043 ... 11 23 3' 
8 -1.9659 ... 15 19 3 

C I . 13 ;yc OtOIDlC -gon 
K 27rk 2sin~ {26/j} Order 

2cos- j I 13 26 
1 1.77090 ... 9 9 0 
2 1.13612 ... 5 5 1 
3 0.24107 ... 1 1 4 
4 -0.70920 ... 3 23 2 
5 -1.49702 ... 7 19 3 
6 -1.94188 ... 11 15 5 

Next consider the cyclotomic 9-gon. Its values of 2cos 1Ck are listed in Table 3 along with the 
9 

. al f . & h' h 2' 1Cj 2 21Ck u' th al f k 1 h ed' th correspondmg v ues 0 J lor w IC SIn-= cos--. smg e v ue 0 = as t e se m e 
18 9 

logistic Map lla, the corresponding 3-cycle is derived, as before, from the sequence of k-values : 
1, 2, 4, 8, ... (mod 9) where 8 == -1 (mod 9) which corresponds to the edge k = 1 in Table 2. Therefore the 
3-cycle is represented by k values: 1-2-4-1 ... Notice that k = 3 is not part of the cycle because 3 is 
not relatively prime to 9. The corresponding j value gives rise to the edge {18/3} = {611}, and this is the 
edge of a star 6-gon not an 18-gon. The sequence of edges is : 5-1-11-5 ... (not shown). This time the 
skip pattern is: 4,8,6 (the pattern would have been 4,4,4,6 if k=3 were to be included) and the product of 
the edges in the cycle equals to -1. 

As a final example consider the cyclotomic 17-gon. Its k andj values are listed in Table 3 and its 4-
cycle can be generated from the seed value corresponding to k = 1 as the sequence, once again, of k­
values: 1, 2, 4, 8, 16, ... (mod 17) where 16 == -1 (mod 17) which corresponds in Table 2 to the edge k = 1. 
This leads to the sequence of star 34-gon edges corresponding to k-values: 1-2-4-8-1 ... whose edge 
lengths are found in Table 3, and to the cycle of edges: 13-9-1-19-13 .... 

However, since 17 is a prime number there are eight distinct star 34-gons (not considering orientation) 
and we have accounted for only four of them where 4 is a factor of 8 according to the results of Section 1. 
The other four can be obtained by beginning with a seed value corresponding to k = 3 resulting in the 
sequence: 3, 6, 12, 24, 48, ... (mod 17) where 48 == -3 (mod 17) which corresponds in Table 2 to the edge 
k = 3. But since 12 == -5 (mod 17) corresponding to the edge k = 5 and 24 == 7 (mod 17), this leads to the 
sequence of edges corresponding to the k values: 3->6->5->7->3 ... .found in Table 3 and to the edge 
sequence: 5-27-31-23-5 ... This 4-cycle is distinguished from the other in Table 3 by order numbers 
denoted by primes ('). If the vertices corresponding to both of these edge cycles are highlighted (not 
shown), they lead to the skip pattern: 4, 4, 4, 6, 4, 4, 4, 4. Once again, the product of the edges equals -1 
for the first 4-cycle and + 1 for the second. 
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s. A Cycle Algorithm 

These examples lead to a simple algorithm for any cyclotomic n-gon for n odd: 

21li n-l 
1. Compute 2cos-- for k = 1,2,3, ... , --. 

n 2 
2. The k-values for the cycle related to the cyclotomic n-gon is the sequence: 

1,2,4,8,16, ... (mod n), disregarding signs, i.e., 2k (mod n) for k = 0,1,2,3 ... ,p-1. This 
sequence repeats when ~ == ±l (mod n) for k = p in which case the cycle has length p 
and the values of i give the order of terms in the sequence beginning with a seed 
value of k = 1 corresponding to i = 0. Record the order numbers i for the sequence of 
iterates to the logistic Equation 3 as i: 0,1,2, ... ,p-1. 

3. Once the k-values of the cycle are determined, compute the values of j such that 2sin 1fi = 
I 14 

2cos 21li , ignoring signs. The values of j come from the sequence: 1,3,5, ... L 2n -1 J where j is 
7 2 

relatively prime to 2n. 
4. If the sign of the cosine is positive, then the species of star polygon is {2n.lj}; if the sign is negative 

then the star polygon is the retrograde version, {2n12n-j}. 
5. The process ends when all j values from step 3 are accounted for. If all of the sine values have not 

been used, then a second sequence of k-values gives another cycle of length p given by: 3k (mod n) 
for k = 0,1,2,3, ... p where 3k == ±1 (mod n) for k = p and steps 2-4 are repeated. Record the order 
numbers as 0',1' ,2' , ... ,(p-1),. If there are still additional unaccounted for j-values, then another p­
cycle can be determined from the sequence 5k (mod n), etc. 

6. The period length is a divisor (or factor) of the number of integers 1,2,3, ... , n -1 relatively prime to 
2 

n. 
7. Observe that the product of edges from a p-cycle satisfies the equation, 

j=e-l 21li n cos-=±1 
k=2) /orj=O n 

Try applying this algorithm to n =15. Note that among the integers k = 1,2,3,4,5,6,7 only 1,2,4, and 7 
are relatively prime to 15, so that according step 6 of the Algorithm, the length of the cycle can be either 2 
or 4. However, since 24 == -1 (mod 15), according to step 4 of the Algorithm the period is 4. 

The results of applying this algorithm to the cyclotomic 11- and 13-gons are found in Table 3 and in 
Figures 5a and b. The cyclotomic 11-gon results in a 5-cycle of edges of the star 22-gon family while the 
cyclotomic 13-gon results in a 6-cycle within a 26-gon. The equal-tempered chromatic scale can be 
represented by a tone circle with 12 tones to the octave, or a 12-gon with each tone distant from the next 
by a semitone. Therefore a 24-sided polygon can be thought of as a tone 'circle in which each tone 
represents an interval of a quarter-tone. This means that the 5- and 6-cycles of the cyclotomic 11- and 13-
gon, along with their symmetric opposites can be viewed as tonal subscales of almost quarter-tone 
intervals, one with tones slightly greater than quarter-tones and the other with tones slightly less. 
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20 

11 

o 
2S~_+--__ .1. 

14 13 

6 

7 

12 

Figure 5: Trajectories of the logistic equation corresponding to the edges 
of (a) a star 22-gon; (b) a star 26-gon (see figure caption of Figure 4). 
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6. Other Lucas Polynomials 

What we have discovered for the second Lucas polynomial, appears to hold true for all of the other Lucas 
polynomials from Table 2. For example, the third Lucas polynomial ~ with alternating signs leads to the 
recursive map, 

X 1-+ X6 -3x. (13) 

With m = 3, taking the seed Xo = 2cos 21c for odd n, results in the sequence {2cos 211k } where this 
n n 

time k = 1,3,9,27,81, ... (mod n), i.e., ~ (mod n) for k = 0,1,2,3, ... ,p-l, ap-cycle as predicted by Table 1. 
The sequence is based on powers of 3 since we are using the 3rd Lucas polynomial. The cycle lengths can 
be determined by the Algorithm with the only change being that k-values of the cycle are now powers of 
3 instead of 2. This generalizes to the m-th Lucas polynomial L", with alternating 'signs in which case the 
iterates correspond to k-values that are powers of m. Presumably, these polynomial maps also represent 
dynamical systems in a state of chaos. However, the products of the edges in a cycle are not always equal 
±1. 

7. Chaos and Number 

There is an intimate relationship between chaos theory and number. We have shown that properties of 
number also lie at the basis of the polygon cycles. Let us once again consider the 2nd Lucas polynomial 

map. Expanding 117 in the base 4 (the square of 2), 117 = 0.021021021. .. = 0.021, a repeating decimal 

with a 3-cycle. Likewise 1/11 = O. 0.01131 expanded in base 4, a 5-cycle (see Appendix B). Our 
conjecture is that for n odd, lin expanded in base 4, has the identical cycle length as the cyclotomic n-gon 
analyzed in the previous section. Furthermore, the identical cycle lengths occur for lin in base 9, 16,25 
or any base m2 as for the cycle lengths of cyclotomic n-gons corresponding to the m-th Lucas polynomial 
maps as shown in Table 2. The validity of this claim and other parts of this analysis were computer 
checked by Malcolm Lichtenstein [6]. 

8. Conclusion 

Many things have come together in this study. We have shown the close relationship between chaos and 
number. The well known theorem of Sharkovskii predicts that once a period 3-cycle appears in a 
dynamical system, periods of all lengths occur. We have shown that at critical point of the Mandelbrot 
set where orbits of the logistic equation begin to escape, each of these periods can be characterized by a 
sequence of edge lengths of a family of star 2n-gons, each n having a characteristic cycle length. Coxeter 
has shown star polygons to be related to the two-dimensional projections of higher-dimensional polyhedra 
or polytopes [7]. Geometry has shown itself once again to be the rich well-spring of mathematics. Rather 
than jettisoning these roots, the theory of dynamical systems and chaos has strongly embraced them. 

Each of these star polygons can be looked at as a tone circle with the cycles represented by 
tones from the "octave." In particular .. the S-cycle from the 22-gon and 6-cycle of the 26-gon are 
promising candidates for new musical scales. After all, the chromatic scale was built from the 
circle of fifths related to the {12/S} star 12-gon. 
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Appendix A 

Given a pair of transformations Tl on set A and T2 on set B, the transformation h mapping A to B, such as 
the ones defined by Equations 5b and 9b, induce relationships between the transformations Tl and T2 via 
the following commuting diagram: 

B Tl )B 

In this relationship h T2 = 1;.h where h is not invertible. Such a transformation is known as a semi­

conjugacy. When h is invertible an isomorphism is induced between the Tl and T2 characterized by 

T2 = h-11;.h , and h is called a conjugacy. 

AppendixB 

A decimal in base 10 can be written in any other base by the following procedure illustrated for 

convening 117 = 0.142857 in base 10 to the base 4. 

1. Multiply the decimal in base 10 by 4 and record a 0 if the result is less than 1, otherwise record the 

integer part. For example, 0.142857x4 = 0.57148 ... so record a 0 as the lSI in the first decimal 
place. 

2. MUltiply the result again by 4 to get 0.2857142... and record a 2 as the tid decimal place. 
3. Multiply the decimal part ofthe preceding number by 4 to get: 1.1428568 ... and record a 1 as the 

3rd decimal place. 
4. Again multiply the decimal part of the preceding number by 4, but since the decimal part repeats 

we have the repeating decimal in base 4: 0.021 

In general, consider the rational fraction lin = ao where ao is the decimal expansion of lin in base 10. Its 
decimal expansion in base m is then: 0.b1b2b3 ••• where bra equals the integer part of: a,.-1 x 4 (mod 1) for 
n= 1,2,3, ... 


