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Abstract 

Several geometric, graph theoretical and combinatorial techniques useful for the teaching, 
analysis, generation and automated recognition of rhythms are proposed and investigated. The 
techniques are illustrated on the six fundamental 4/4 time clave and bell rhythm timelines most 
frequently used in African, Brazilian and Cuban music. It was found that Pressing's measure of 
rhythm complexity agrees well with the difficulty of performing these clave rhythms whereas the 
Lempel-Ziv measure appears to be useless. An analysis of the rhythms with several similarity 
measures reveals that the clave Son is most like all the other clave rhythms and perhaps pro­
vides an explanation for its worldwide popularity. Finally, a combinatorial technique based on 
permutations of multisets suggests a fruitful approach to automated generation of new rhythms. 

1 Introduction 

Imagine a clock as illustrated in Figure 1 which strikes a bell at 16 O'clock and at the 3, 6, 
10 and 12 positions for a total of five strikes per clock cycle. The resulting pattern rings out a 
seductive rhythm which in a short span of fifty years during the last half of the 20th century has 
managed to conquer the planet. It is known around the world mostly as the Clave Son from Cuba. 
However, it is common in many African rhythms and probably travelled from Africa to Cuba with 
the slaves. In Cuba it is played with two sticks made of hard wood also called claves [21]. In Africa 
it is traditionally played with an iron bell. In a section below a mathematical argument is offered 
to explain the world-wide popUlarity of this rhythm. 

The Clave Son rhythm is usually notated for musicians using standard music notation which 
affords many ways of expressing a rhythm. Four examples are given in the top four lines of Figure 2. 
The fourth line shows it with music notation using the smallest convenient notes and rests. The 
bottom line shows a popular way of representing rhythms for percussionists that do not read music. 
It is called the Box Notation Method developed by Philip Harland at the University of California 
in Los Angeles in 1962 and is also known as TUBS (Time Unit Box System). If we connect the 
tail to the head of this last diagram and draw it in the form of a circle in clockwise direction we 
obtain the clock representation in Figure 1, where the squares in Figure 2 filled with black dots 
correspond to the positions of the bells in Figure 1. The box notation method is convenient for 
simple-to-notate rhythms like bell and clave patterns as well as for experiments in the psychology 
of rhythm perception, where a common variant of this method is simply to use one symbol for the 
strike and another for the pause [6]. Thus for the clave son a common way to write it is simply 
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Figure 1: A clock divided into sixteen intervals of time. 
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Figure 2: Five ways of representing the clave Son rhythm. 

as [x .. x .. x ... x. x ... ]. Finally, in computer science the clave son would be written as the 
16-bit binary sequence: [1 0 0 1 00 1 000 1 0 1 000]. 

Playing these five notes is more difficult than it appears at first hearing. When a Cuban per­
former passionately invites the audience to participate in clapping this clave Son, the non-musicians 
in the crowd invariably execute their second clap at 4 o'clock instead of 3 o'clock. 

There exist literally hundreds of such timeline patterns for bells, claves and woodblocks used in 
music throughout Africa, Brazil and the Caribbean. This is not surprising when one considers the 
number of combinations one can create out of five notes played in the sixteen available positions of 
two bars. Add to that the patterns made with six, seven and up to eleven notes; add to that the 
patterns that use four bars and in addition the 6/8 time rhythms and we quickly obtain a combina­
torial explosion. In this preliminary study however, we are concerned only with the six fundamental 
five-note 4/4 time clave and bell timelines most frequently used in African, Brazilian and Cuban 
music. These rhythms are known under many names in different countries but for the purpose of 
this study I will call them: Shiko, Son, Soukous, Rumba, Bossa-Nova and Gahu. Figure 3 shows all 
six of them in box notation. 

1.1 A geometric representation of rhythms 

Consider again the standard musical notation for the clave Son illustrated in the top row in Figure 2. 
Can the rhythm be played backwards starting at a suitable note so that it sounds exactly the same? 
Answers to questions such as these are not immediately evident with such a notation. The box 
notation at the bottom of Figure 2 allows this question to be answered more easily. The answer is 
yes if we start on the third note. In other words the clave Son is a shifted (or weak) palindrome. 

An even better representation for such cyclic rhythms is obtained by starting with the clock 
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1.1 I I 1.1 1.1 I I 1.1 1.1 I I I 

1.1 I 1.1 I 1.1 I I 1.1 1.1 I I I 
Son 

1.1 I 1.1 I 1.1 I I 1.1.1 I I I I 
Soukous 

1.1 I 1.1 I I 1.1 I 1.1 1.1 I I I 
Rumba 

1.1 I 1.1 I 1.1 I I 1.1 I 1.1 I I 

1.1 I 1.1 j 1.1 I I 1.1 I I 1.1 I 
Gahu 

Figure 3: The six fundamental 4/4 time clave and bell patterns in box notation. 

Son 

Figure 4: The six fundamental 4/4 time clave and bell patterns represented as convex polygons 
inscribed in an imaginary circle. 

idea of Figure 1 and connecting consecutive note locations to form a convex polygon. Such a 
representation not only enhances visualization but lends itself more readily to mathematical analysis. 
It has been used by McLachlan [18] to analyze rhythmic structures from Indonesia and Africa using 
group theory and Gestalt psychology. The six clave bell patterns are represented as convex polygons 
in Figure 4 and analysed in more detail in the following section. Note that in Figure 4 the dashed 
lines indicate either the base of an isoceles triangle or an axis of mirror symmetry. 
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2 Geometric Analysis of Rhythms 

The representation of the six clave and bell patterns described above as convex polygons il­
lustrated in Figure 4 readily uncovers a variety of discriminating geometric properties useful for 
comparing, analysing and classifying rhythms. Discovering such properties by analyzing classical 
music notation, or even box-notation, is not self evident. For example, it is imediately obvious 
from examination of Figure 4 that three timelines, namely Shiko, Soukous and Gahu contain a 
right interior angle as one of the vertices in their polygons, whereas the other three (Son, Rumba 
and Bossa-Nova) do not. It is equally irresistible to notice that the former three rhythms evolved 
in Africa whereas the latter three in America; Bossa-Nova in Brazil and Son and Rumba in Cuba. 
Does a right angle translate to a stronger beat? Is the presence of the right angle as a discriminating 
feature between African and American popularity of rhythms more than mere coincidence? 

We also see immediately that Shiko and Bossa-Nova are palindromes. They sound the same 
played forwards or backwards. This can be seen from the mirror symmetry of the polygons about 
the line through positions (0,8). On the other hand, Son is a weak palindrome in that there exists a 
position other than (O) from which the rhythm sounds the same when played forwards or backwards. 
In this case the position is (3) since the polygon has mirror symmetry about the line (3,11). 

Shiko, Son and Soukous have one isoceles triangle each determined by suitable diagonals. Note 
that an isoceles triangle indicates two equal consecutive time intervals between notes. Gahu has 
two isoceles triangles and Bossa-Nova has three. The Bossa-Nova is a maximally-even set [3]. A 
maximally-even set is one in which a subset of the elements has its elements as evenly spaced as 
possible. The Bossa-Nova has four inter-note intervals of length three and one of length four. In 
contrast Rumba is the only rhythm with no isoceles triangles, no axis of mirror symmetry and no 
right angles. Rumba is, at least geometrically speaking, an extraordinary rhythm indeed. 

3 Measuring the Complexity of Rhythms 

One natural feature useful for a variety of applications including automated recognition of 
rhythms is rhythm complexity. A great deal of attention·has been devoted to measuring the ob­
jective complexity of sequences in the field of information theory [19], [2]. However, when dealing 
with rhythm one cannot restrict investigation to consider only objective phenomena. As with visual 
stimuli, aural stimuli exhibit a variety of perceptual illusions. One of the earliest observations of this 
kind is concerned with the perception of beat. By beat is meant one of a series of perceived pulses 
marking equal units of time. Already in 1894 T. L. Bolton discovered that an isochronous train 
of identical pulses, such as clock "tics," elicits in the human subject an experience of alternating 
strong and weak beats, a phenomenon known as subjective rhythm [1]. 

3.1 The Lempel-Ziv complexity 

In 1976 Lempel and Ziv [14] proposed an information-theoretic measure of the complexity of a finite 
sequence in the context of data compression. Their novel approach evaluates the complexity of a 
finite sequence by scanning the given sequence from left to right looking for the shortest subsequences 
(words) that have not yet been seen during the scan. Every time such a word is fOQ,nd it forms part 
of a growing vocabulary. When the scan is finished the size of this vocabulary is the measure of 
complexity of the sequence. For cyclic sequences such as the rhythms considered here it is sufficient 
to examine a concatenation of only two instances of the rhythm pattern since no new subsequences 
will be found by examining longer sequences of the rhythm. As an example consider the clave Son 
illustrated in Figure 5. The rhythm in binary notation is shown in Figure 5 (ar Repeating it a 
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Clave Son 

(a) 1001001000101000 

(b) 10010010001010001001001000101000 

(c) 1.0.01.001000.101.000100.1001000101000 
1 2 3 4 5 6 

Figure 5: Illustrating the computation of the Lempel-Ziv complexity of the clave Son. 

Rhythm Complexity Measures 

Lempel-Ziv Pressing Metric 

Shiko 5 6 2 

Son 6 14.5 4 

Soukous 6 15 6 

Rumba 6 17 5 

Bossa-Nova 5 22 6 

Gahu 5 19.5 5 

Figure 6: A comparison of three measures of rhythm complexity. 

second time yields the 32 bit-pattern in Figure 5 (b). Figure 5 (c) shows each new subsequence 
found by the scan separated by a diamond marker and labelled with an index number underneath. 
For the clave Son six new subsequences are generated by this process and therefore the Lempel-Ziv 
complexity is equal to six. 

Looking at the scores obtained for the six clave rhythms in Figure 6 (without even comparing 
to the other measures) shows that this measure is quite bad. There is almost no variance in the 
scores: all are either 5 or 6. Also the scores do not make sense to anyone experienced in teaching 
or playing these rhythms. For example Shiko is the simplest of the six rhythms, and Gahu one of 
the most complex, both to recognize and to play, yet the Lempel-Ziv complexities are 5 for both 
of these rhythms. It appears that information theoretic measures are not able to capture well the 
human perceptual, cognitive and performance complexities of rhythms. 

3.2 The cognitive complexity of rhythms 

Jeff Pressing proposed a measure of the cognitive complexity of a rhythm based on psychological 
principles and the syncopation present in the rhythm at different levels of pulse [22]. The reader 
is referred to Pressing [22] for the theory and details on how to measure the cognitive complexity 
of rhythmic patterns. The cognitive complexities of the ten 4-unit patterns made up of one-note 
patterns and two-note patterns computed with Pressing's measure are shown in Figure 7. If we 
take the 16-bit patterns of the clave rhythms, divide them into four units of four bits each, and 
add the Pressing-complexities of the four corresponding units we obtain values for the Pressing 
complexities of the six clave rhythms. For example, the Shiko pattern consists of the concatenation 
of the patterns [1 0 0 0], [1 0 1 0], [0 0 1 0] and [1 0 0 0]. Referring to Figure 7 we obtain the 
complexities 0, 1,5 and 0 for a total of 6. On the other hand the Rumba yields a Pressing cognitive 
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Cognitive Complexity 

a.~ 2.5 f.~ 5.5 

b. l!IJill g.1illI.] 0 

c. !!III!] 4.5 h. D!ITJ 7.5 

d.~ 6.5 i. ITJill 5 

e. D!IJ!] 10 j. ITIJ!] 7.5 

Figure 7: The cognitive complexities of ten basic rhythm .patterns according to Pressing [22]. 

complexity of 4.5 + 7.5 + 5 + 0 = 17. Examining the Pressing cognitive complexities of all six 
clave rhythms in Figure 6 reveals much more information than the Lempel-Ziv complexities. All 
the scores are different and the variance is quite large ranging from 6 for the Shiko to 22 for the 
Bossa-Nova. The scores are also in good agreement with teaching and performing experience. Shiko 
is easy, Rumba is harder than Son, and Bossa-Nova and Gahu are the hardest of these six rhythms. 

3.3 Metricity and metric complexity 

Lerdahl and Jackendoff [15] proposed a construct called a metrical structure for describing the 
temporal psychological organization of rhythmic patterns at all metrical levels. Their metrical 
structure for the 16-time unit interval relevant to the clave and bell patterns considered here is 
illustrated in Figure 8. The structure defines a function that maps the index of the time unit to 
the relative strength of its metrical accent. The easiest way to describe the function is by summing 
levels of beats. At the first level of metrical accent a beat is added at every time-unit starting at 
unit O. At the second level a beat is added at every second time unit starting at unit O. At the 
third level a beat is added at every fourth time unit starting at unit O. We continue in this fashion 
doubling the time interval between time units at every level. In this way time unit 8 receives 4 
beats and finally time unit 0 receives 5 beats. Thus time units 2, 6, 10, and 14 are weak beats, time 
units 4 and 12 are medium strength beats, unit 8 is stronger and unit 0 is the strongest beat. 

A new measure of the complexity of a rhythm can be defined based on the above concept of 
meter. First define a measure of the total metric strength of a rhythm and call it metricity. It is 
simply the sum of all the metrical accents of the beats present in a rhythm. For example, the clave 
Son has notes at time units 0, 3, 6, 10 and 12. The metrical accents in Figure 8 corresponding to 
these time units are 5, 1, 2, 2 and 3, respectively. Therefore the metricity of the clave Son according 
to the hierarchical arrangement of Lerdahl and Jackendoff [15] is equal to 13. Since this metrical 
structure has a simple highly structured hierarchy, the metricity function defined here is actually 
a measure of metric simplicity. As such it is inversely proportional to what will be called metric 
complexity. Note that the maximum value of the metricity for five notes cannot exceed 17 and 
therefore the metric complexity will be defined as 17 minus the metricity. Therefore the metric 
complexity of the clave Son, for example, is 17 - 13 = 4. 

Although the metrical structure defined by Lerdahl and Jackendoff is based on Western or Euro­
pean music it is nevertheless an interesting lens through which to view African and Afro-American 
rhythms. However, even if this measure has little psychological significance or universal musical 
merit, at worst it is as valid an objective mathematical measure as the Lempel-Ziv complexity and 
may find application as a feature extraction method for the automated classification of rhythms. 
Examination of the metric complexity scores of the six clave rhythms in Figure 6 reveals that this 
is nevertheless a much better measure than the Lempel-Ziv complexity. The variance is reasonable, 
Shiko has the lowest score of 2, Rumba (5) has a higher score than Son (4) and Bossa-Nova is 
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• • • • • • • • • • • • • • • • •• • •• • • •• • • •• • • o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
time unit 

Figure 8: The metrical structure of Lerdahl and Jackendoff [15] for a time line pattern of 16 time 
units. 

amongs the most complex with a score of 6. However, the metric complexity measure is not as good 
as Pressing's cognitive complexity. Bossa-Nova and Gahu are more difficult to play than Soukous, 
for example, and the metric complexity measure ranks Soukous as harder than Gahu. 

4 Measuring the Similarity of Rhythms 

At the heart of any algorithm for comparing, recognizing or classifying a rhythm is a measure of 
the similarity between two rhythms. There exists a wide variety of methods for measuring the simi­
larity of two rhythms represented by a string of symbols. Indeed the resulting approximate pattern 
matching problem is a classical problem in pattern recognition and computer science in general [5]. 
When the two strings are binary sequences a natural measure of distance or non-similarity between 
them is the Hamming distance [11] widely used in coding theory. The Hamming distance is the 
number of places in the strings that do not match. The Hamming distance is not appropriate for our 
problem of rhythm similarity because although it measures a missmatch, it does not measure how 
far the missmatch occurs and if a note is moved a large distance it will sound more different than 
if it is moved a small distance. Some rhythm detection algorithms [20] and systems for machine 
recognition of music patterns [4] use inter-onset intervals as a basis for measuring similarity. These 
are the intervals of time between consecutive note onsets in a rhythm. Coyle and Shmulevich [4] 
represent a music pattern by what they call a difference-oj-rhythm vector. If T = (tl! t2, ... , tn ) is 
a vector of inter-onset time intervals for the notes of a rhythm then they define the difference-of­
rhythm vector as X = (Xl! X2, •.. , xn-d, where Xi = ti+1/ti. This approach is more appropriate 
than the Hamming distance for the rhythms considered here. In the next subsection the six clave 
rhythms are compared with respect to a feature vector defined by successive inter-onset intervals in 
a slightly different way. 

4.1 The interval vector distance 

Consider the representation of the six clave rhythms as convex polygons in Figure 4. These polygons 
immediately suggest a variety of possible shape feature vectors for characterizing the rhythms based 
on measuring angles of vertices or lengths of edges. Alternately one could measure global shape 
features of the polygon [25]. 

Here each rhythm is represented by a vector of five numbers that characterize these five intervals. 
More specifically a rhythm is represented by X = (Xt,X2,xg,x4,XS), where Xi is the number of 
vertices skipped by the ith polygon edge starting at the vertex labelled O. This is essentially the 
same as the sequence of inter-onset time intervals since the time interval is the number of vertices 
skipped plus one. The dissimilarity between two rhythms X and Y is measured by the Euclidean 
distance between the two vectors X and Y in this 5-dimensional vector space. The distance matrix 
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Interval Vector Distance Matrix 

Shiko Son Soukous Rumba Bossa Oahu 

Shlko 0 1.41 2 2.45 2 3.16 

Son 0 1.41 1.41 1.41 2.83 

Soukous 0 2 2.83 4.24 

Rumba 0 2 3.16 

Bossa-Nov8 0 1.41 

Oahu 0 

L 11.02 'IM7 12.48 11.02 9.65 ~ 

Figure 9: The distance matrix of the interval vectors with the Euclidean metric. The bottom row 
indicates for each rhythm the sum of the distances it is from the other five. 

Minimum Spanning Tree 
Soukous 

Rumba __ S.;..o_n+-__ Shiko 

Bossa-Nova 

Gahu 

Figure 10: The minimum spanning tree determined by the distance matrix of interval vectors. 

based on these vectors is shown in Figure 9. The bottom row in Figure 9 shows for each rhythm 
the sum of its distances to all the other rhythms. This is a measure of how dissimilar a rhythm is 
from the rest of the group. Most noteworthy are the highest (14.80) and lowest (8.47) values for 
Gahu and Son, respectively. David Locke [16] has argued forcefully, from the music theory point 
of view, the uniqueness of the Gahu bell pattern. The results obtained here provide mathematical 
confirmation of Locke's musical analysis. They also provide mathematical evidence that the clave 
Son is most like all the others. This may explain the world-wide popularity of the Son. 

4.2 The minimum spanning tree 

The minimum spanning tree is a powerful and useful visualization tool for understanding the struc­
ture of data in higher dimensional spaces such as that encountered here [26]. For this reason it 
has been used with great success in cluster analysis [5]. The distance matrix of Figure 9 defines a 
complete weighted graph G. The six rhythms correspond to the six nodes of the graph. The graph is 
complete because every pair of nodes is connected by an edge. The weight on each edge connecting 
two nodes is the distance between the corresponding two rhythms. The minimum spanning tree 
(MST) of G is the subgraph of G that is a tree (has no cycles), connects (spans) all six nodes, and 
has minimum weight among all such trees. Here the weight of the tree is just the sum of the weights 
of all its edges. Note that in general the minimum spanning tree may not be unique. There exist 
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Rooted Phylogenetic Tree root 

Son 

Soukous 

Figure 11: The rooted phylogenetic tree constructed for the distance matrix in Figure 9. 

many algorithms for computing the minimum spanning tree [8]. The simplest from a conceptual 
point of view is Kruskal's algorithm. This algorithm first sorts all pairs of nodes (edges) by in­
creasing weight (distance) and then scans through this sorted list picking edges to add to a growing 
tree as long as no cycles are created. Proceeding in this way with the distance matrix in Figure 9 
quickly results in the minimum spanning tree shown in Figure 10. The topology of the minimum 
spanning tree in Figure 10 provides at a glance a good idea of how the smallest distances (1.41) in 
the distance matrix relate to one another qualitatively. Here one can visualize instantly that Gahu 
is most unlike the remaining rhythms whereas Son is most similar to the other five rhythms. In fact 
Son is the center of gravity of the tree in the sense that it is the node that minimizes the sum of 
distances (within the tree) to all the other rhythms. 

4.3 Phylogenetic trees 

The drawing of the minimum spanning tree in Figure 10 does not attempt to quantitatively visualize 
all the distances in the distance matrix of Figure 9. For this purpose there exist more powerful (and 
difficult to compute) tools such as the phylogenetic trees of Gaston Gonnet [7]. For details on h:::.w 
to construct such trees see [7]. The Computational Biochemistry Research Group of the Swiss 
Federal Institute of Technology (ETH) offers a web service for computing phylogenetic trees from 
distance matrices submitted to their server. Although designed for applications to gene sequence 
analysis in molecular biology, phylogenetic trees can be constructed for any distance matrix such as 
the ones obtained from sequences of notes in rhythms. Such trees serve to describe the clustering 
relationships between objects much like the more traditional hierarchical cluster analysis techniques 
used in data analysis [5], [13]. 

One type of phylogenetic tree is the "vertically" oriented rooted tree. Such a tree constructed 
from the distance matrix of Figure 9 is shown in Figure 11. In this tree the minimum vertical 
distance (vertical component only) travelled in traversing the tree between two nodes (up and down) 
is proportional to the distance between them in the distance matrix. For example, the distance 
between Gahu and Soukous is 4.24. In the rooted phylogenetic tree this distance is proportional to 
the distance travelled upwards from the Gahu node to the root (vertical component only) plus the 
distance travelled downwards (vertical component only) from the root to the Soukous node. The 
rooted phylogenetic tree shows the hierarchical clustering that exists between all the rhythms. The 
first partition is in the two fundamental clusters: Bossa-Nova and Gahu in the right cluster and 
the other four in the left cluster. The left cluster then breaks up into Shiko and the other three: 
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I-I-lei I-lei I-I I-lei 

Figure 12: The sequence used by Steve Reich in Clapping Music [24]. 

Figure 13: The other sequence found by Joel Haak [9]. 

Son, Soukous and Rumba. Finally, Son breaks away from the pair Soukous and Rumba. Here the 
phylogenetic trees have been used for visualization and clustering purposes only. However, in future 
work such trees will be used to determine "ancestral" rhythms. 

5 Combinatorial Analysis of Rhythms 

The application of combinatorics to the analysis of music is not new. However, almost all such 
analyses have been applied to the "vertical" tone scale rather than the "horizontal" time scale [23], 
[3]. Exceptions to this trend are the two papers by Haak [9], [10] and the one by London [17]. 

Steve Reich [24] composed an interesting piece called Clapping Music for two people clapping 
hands. Both performers clap exactly the same 12-time-unit rhythm shown in Figure 12. One 
performer repeats the sequence continually throughout the piece but the second performer, after 
having repeated the sequence 12 times, shifts the sequence by one beat. The second player continues 
to shift the pattern by one time unit in the same direction every time the pattern has been played 
12 times. The piece finishes when the second performer returns in phase with the first. Thus the 
last 12 combined patterns sound the same as the first 12 when both performers are perfectly in 
phase. 

There are 8 notes (claps) in Steve reich's Clapping Music. The number of ways we can select 
8 out of 12 time units in which to clap is (12!)/{8!)(4!) = 495. Joel Haak [9] raises the interesting 
question of how Reich might have come to select the pattern in Figure 12 out of all the possible 495. 
Did he listen to all 495 and select the pattern he liked best? Haak then suggests a mathematical 
response to the question. If we take into consideration that a piece should begin with a clap and 
not a silent pause, and if cyclic permutations of a pattern are considered equivalent, and if during 
the execution of the entire piece the combined pattern made by both performers clapping does not 
repeat itself, and finally, if we do not allow consecutive repetitions of the number of claps between 
two consecutive pauses, then only 2 of the 495 patterns satisfy these constraints. One is the [3,2,1,2] 
note pattern Reich chose in Figure 12. The other is the [4,1,2,1] note pattern of Figure 13. Haak does 
not offer a criterion for choosing between the last 2 remaining candidates. But of course if we want 
to minimize the maximum range of the lengths of consecutive claps, then we obtain Reich's pat­
tern. Alternately, we may invoke the criterion of maximally-even sets [3] to arrive at Reich's pattern. 

5.1 Permutations and multisets 

In the clave rhythm patterns considered in this paper five notes are played in sixteen available time 
units. The number of ways to select 5 out of 16 is (16!)/{5!)(11!) = 4368. This is a large number 
of patterns. Furthermore most of these may be useless as good time-line patterns for powerful 
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percussive dance music. How can we reduce this large number to an interesting small subset? 
Note that in the five clave patterns other than Soukous, the minimum and maximum inter-onset 
intervals are 2 and 4, respectively. Therefore we can modify the combinatorial question to take 
such constraints into account. Consider the clave Son pattern in binary sequence representation 
[1 0 0 1 00 1 000 1 0 1 0 0 0] and its interval-vector (2 2 3 1 3) corresponding to the time units 
skipped (zero's) in between the notes played (one's). One may ask how many permutations exist 
of the pattern (2 2 3 1 3)? Note that these are multisets now since repetitions of the elements are 
permitted [12]. We have 5 objects of three different classes: 1 of class one, 2 of class two and 2 of class 
three. Therefore the total number of different permutations of (2 2 3 1 3) is (5!)/(1!)(2!)(2!) = 30. 

The reader is invited to play these. It turns out all 30 of these permutations sound great. Among 
these 30 are also found the Rumba, the Gahu as well as the backward versions of the Son, Rumba 
and Gahu. This also becomes evident from examining Figure 4. If one rhythm may be obtained 
from another by a permutation of its interval vector the two rhythms will be said to belong to the 
same interval combinatorial class. Thus Son (2 2 3 1 3), Rumba (2 3 2 1 3) and Gahu (2 2 3 3 1) 
belong to the same interval combinatorial class, whereas Shiko (3 1 3 1 3), Soukous (2 2 3 04) and 
Bossa-Nova (2 2 3 2 2) each belong to their own distinctive classes. 

Returning to the 30 rhythms of the Son-Rumba-Gahu interval combinatorial class, and excepting 
the Son played backwards because it is a weak palindrome, the remaining 26 rhythms have an eerie 
resemblance to the Son, Rumba and Gahu but sound more modern, more jazzy somehow. Any 
one of them could be successfully incorporated in new music. This interval combinatorial technique 
suggests a fruitful approach to automated generation of new rhythms. 

References 

[1] T. L. Bolton. Rhythm. American Journal of Psychology, 6:145-238, 1894. 

[2] Gregory J. Chaitin. Information theoretic computational complexity. IEEE Transactions on 
Information Theory, IT-20:10-15, 1974. 

[3] J. Clough and J. Douthett. Maximally even sets. Journal of Music Theory, 35:93-173, 1991. 

[4] E. J. Coyle and I. Shmulevich. A system for machine recognition of music patterns. In Pro­
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 
Seattle, Washington, 1998. 

[5] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. John Wiley, 
New York, 1973. 

[6] Douglas Eck. A positive-evidence model for classifying rhythmical patterns. Technical Report 
IDSIA-09-00, Instituto Dalle Molle di studi sull'intelligenza artificiale, Manno, Switzerland, 
2000. 

[7] Gaston H. Gonnet. New algorithms for the computation of evolutionary phylogenetic trees. In 
S. Suhai, editor, Computational Methods in Genome Research. Plenum Press, 1994. 

[8] Michael T. Goodrich and Roberto Tamasia. Algorithm Design. John Wiley and Sons, Inc., 
New York, 2002. 

[9] Joel K. Haak. Clapping Music - a combinatorial problem. The College Mathematics Journal, 
22:224-227, May 1991. 



168 Godfried Toussaint 

[10] Joel K. Haak. The mathematics of Steve Reich's Clapping Music. In Proceedings of BRIDGES: 
Mathematical Connections in Art, Music and Science, pages 87-92, Winfield, Kansas, 1998. 

[11] R. W. Hamming. Coding and Information Theory. Prentice-Hall, Englewood Cliffs, New Jersey, 
1986. 

[12] T. C. Hu and B. N. Tien. Generating permutations with non-distinct items. American Math­
ematical Monthly, 83(8):193-196, October 1976. 

[13] J. W. Jaromczyk and Godfried T. Toussaint. Relative neighborhood graphs and their relatives. 
Proceedings of the IEEE, 80(9):1502-1517, 1992. 

[14] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on Information 
Theory, IT-22(1):75-81, 1976. 

[15] F. Lerdahl and R. Jackendoff. A Generative Theory of Tonal Music. MIT Press, Cambridge, 
Massachussetts, 1983. 

[16] David Locke. Drum Gahu: An Introduction to African Rhythm. White Cliffs Media, Gilsum, 
New Hampshire, 1998, 

[17] Justin London. Hierarchical representations of complex meters. In 6th International Conference 
on Music, Perception and Cognition, Keele University, United Kingdom, August 5-10 2000. 

[18] Neil McLachlan. A spatial theory of rhythmic resolution. Leonardo, 10:61-67, 2000. 

[19] Abraham Moles. Information Theory and Esthetic Perception. The University of Illinois Press, 
Urbana and London, 1966. 

[20] Bernard Mont-Reynaud and Malcolm Goldstein. On finding rhythmic patterns in musical lines. 
In Proceedings of the International Computer Music Conference, pages 391-397, San Francisco, 
California, 1985. 

[21] Fernando Ortiz. La Clave. Editorial Letras Cubanas, La Habana, Cuba, 1995. 

[22] Jeff Pressing. Cognitive complexity and the structure of musical patterns. In Proceedings of 
the 4th Conference of the Australasian Cognitive Science Society, Newcastle, Australia, 1997. 
[CD-ROM]. 

[23] Ronald C. Read. Combinatorial problems in the theory of music. Discrete Mathematics, 167-
168, April 1997. 

[24] Steve Reich. Writings about Music. The Press of the Nova Scotia College of Art and Design, 
Halifax, Canada, 1974. 

[25] Godfried T. Toussaint. Generalizations of 11": some applications. The Mathematical Gazette, 
pages 291-293, December 1974. 

[26] Charles T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE 
Transactions on Computers, C-20:68-86, 1971. 


