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Abstract 

From graphic design to stock market predictions, applications offtactal geometry permeate fields in every 
way. The depiction offtactals also has substantial artistic intrigue. Mathematical graphs displaying multiple 
dimensions of self-similarity reveal highly evocative perceptions of depth and design. Such a fascination in sight can 
also be perceived in sound. This n:searclt explains the depiction offractal geometry in music. It examines various 
compositional techniques used to employ the ~on offtactal symmetry in music. Upon considering such 
representations entailed in the compositional process and realized in the structure of a musical work, we use our 
findings to engineer an original method that musically depicts the geometry of a ftactaI. This method ba$ its ultimate 
realization in a musical composition that amalgamates our discoveries. This paper will discuss fractal repn:sentations 
in music and the compositional procedures that achieved them. 

1. Introduction 

Fractal geometry, popularized by Benoit Mandelbrot [4] in the nineteen-seventies, 
remains a highly evocative topic. The most vivid example of a ftactal is the Koch snowflake, 
constructed by the Swedish mathematician Helge von Koch in 1904. To begin Construction of the 
Koch snowflake, start with an equilateral triangle of unit side. We call this starting figure the 
initiator. Next, to generate the figure, replace the middle third of each line segment of the triangle 
with two new line segments, each having length one-third of the original line segment. Each 
generation stage of the snowflake proceeds similarly, replacing each line segment with a copy of 
the generator, such that the newly adjoined line segments are one-third the length of those in the 
preceding stage. The snowflake has its ultimate realization by continuing its construction ad 
infinitum. 

Figure 1. The Koch Snowflake. 

Each side of the snowflake is self-similar. That is, ifwe were to zoom in on a given side any 
number of times, the resulting perspective would be identical to the original. The model of the 
Koch snowflake gives us a vivid conception of what a ftactal is. 
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Fractals are not exclusive to figures such as the Koch snowflake. Self-similar fractals can 
be generated many ways and are found in many different areas. Yet, common to all is the 
relationship between the initiator and generator. For example, we can initiate and generate 
number sequences that become fractals. To begin, consider the set of integers SO = {0,2,3}. Let 
SO be our initiator, and to generate SO, simply add the entire set to each of its elements. The 
following diagram shows the first and second generations: 

so 0 2 3 

Sl 0 2 3 2 4 Ii 3 Ii & 

S2 0 2 3 2 4 Ii 3 Ii & 2 4 Ii 4 & 1 Ii 1 8 3 Ii & 5 1 8 & 8 9 

Figure 1. SO and its First Two Generations. 

Continuing the generations indefinitely produces a number sequence with multiple dimensions of 
self-similarity. We can see this by removing integers from the sequence. If we remove every 
integer except every third or ninth, the previous sequence results. To generalize, the removal of 
every integer save every 3"kth integer results in the appearance of the previous sequence. Thus, 
the number sequence is embedded within itself on a multitude of different levels yielding a fractal 
structure. Fractal generation of number sequences such as this becomes particularly important 
when we want to create ftactals in music. Before we learn how, we must discuss another aspect 
of ftactals, fractal dimension. 

1.1 Fraetal Dimension. The fractal dimension tells us how densely a particular geometry 
.occupies a given space. The calculation of a fractal's dimension allows us to objectively classify, 
compare, and contrast any number of fractals. One way of calculating fractal dimension is 
through the recognition of the affine self-similarity of an object. For an object to be affine self­
similar, it must consist of congruent subsets, each of which can be magnified by a constant factor 
to yield the original object. To calculate the fractal dimension of such an object we have the 
following definition: 

DefinitioD: [2] Suppose the affine self-similar set S may be subdivided into k congruent 
pieces, each of which may be magnified by a factor of M to yield the whole set S. Then the 
fractal dimension D of S is 

D = log (k) 1 log (M) = log (number of pieces) 1 log (magnification factor). 

Comparing these qualities to the Koch snowflake, we find that the sides of the snowflake 
are affine self-similar. Thus, to calculate each side of the object, recall that each original side was 
decomposed into four smaller pieces with a magnification factor of3. Applying our formula 
yields: 

D = log (4) 1 log (3) = 1.2618 ... 
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We only examine the sides of the triangle because no single side can be magnified to 
represent the eiltire object. Thus, the snowflake in its eiltirety is a composite of three Koch 
curves, each with the same dimension. Because of this, we can apply the following theorem: 

THEOREM: [1] If dim(A) ~ dim(B) for sets Aand B, the dim(A U B) = dim(A). 

Therefore labeling the sides of the Koch snowflake A, B, and C respectively and applying 
the theorem, we know dim(A) = dim(B) = dim(C), and the fractal dimension of the Koch 
snowflake is 1.2618. 

2. Numbers to Notes 

Mathematical inflUeilce has profoundly shaped how composers and theorists have 
advanced musicianship. Composers such as Pierre Boulez and Iannis Xenakis have musically 
implemented concepts such as algebraic structures and statistics. Recently, the intricate structures 
of fractal geometry have sparked new imagination in the construction of music. The resulting 
music depicting such geometry has been labeled "fractal music." Fractal music is a composition 
conceived and constructed based on the principles and applications of a specific type of fractal 
geometry that ultimately represents a fractal-like structure. Much of the existing fractal music is 
constructed via computer and results from the application of mathematical algorithms. However, 
:fractals are conceived, generated, and depicted in music in many ways .. Common to all,the 
quality that merits a composition's fractal nature is the presence of multiple dimensions of self­
similarity (the whole is the part and the part is the whole). 

We engineered an original method to compose a fractal music composition that fits our 
description. The composition in discussion, "Iterations I" for flute and piano, by Brian Hansen, 
was constructed algorithmically and without the aid of the computer. However, in order to fully 
realize a ftactal composition we must consider if algorithmic application accomplishes our goal; 

(a) Does the mathematical algorithm itself contain :fractal geometry? 

(b) Does the musical application of the :fractal preserve the geometry? 

(c) Does the realized composition reflect/preserve the geometry (does it depict self-similar 
dimensions)? 

To answer these questions, we will discuss the application of the particular algorithmic method 
used to generate the:fractal music of "Iterations I." We will also discuss how ultimately the 
composition contains self-similar dimensions and thus represents a fractal. 

2.1 The Equal-Tempered Chromatic Scale. To compose a piece of music by algorithmic 
application, we will correspond integers to pitches in music. We will accomplish this 
correspondeilce using the equal-tempered chromatic scale. The chromatic scale consists of twelve 
different pitches. The pitches are assigned letter names starting with A and progressing to G. Of 
course these letters only account for seven of the twelve pitches, SO what about the other five? 
The remaining five pitches lie between the lettered pitches and are·designated as either sharp (#) 
or flat (b) relative the nearest lettered pitch. Thus, the pitches in a twelve-tone scale may appear 
sequentially two ways as: 
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A AN B c D D# E F F# G G# 

(Or) 

-n 

A Db B c Db D Eb E F Gb GAb. 

Figure 3. The Twelve-Tone Western Scale. 

It is important to know about interval content (distance between two pitches) in the 
chromatic scale. We can determine this by counting the number of "half-steps" or "whole-steps" 
between two pitches. A half-step is the distance between: a pitch and the adjacent pitch on either 
side. For example, the pitches A and B are adjacent to Bb, thus these pitches are a half step apart. 
A whole step is the distance between a pitch and the second tone on either side of it. The second 
tones on both sides of CareD and Bb, so these pitches differ by whole-steps. 

2.2 "IteratioDS L" The composition "Iterations I" for ftuteand piano, by Brian HanSen, is a 
musical depiction of the iterative process undergone using an initiator and generator to create a 
ftactal. This particular ftactal depiction was accomplished using number sequences~ Recall the 
number sequences constructed using the.initial set SO = {0,2,3} and its two generations: 

SO= {0,2,3} 
SI = {0,2,3,2,4,5,3,5,6} 
S2= {0,2,3,2,3,5,3,5,6,2,4,5,4,6, 7,5, 7,8,3,5,6,5, 7,8,6,8,9}. 

These sequences have the potential for musical application. To accomplish this, simply assign 
numeric values to notes in the chromatic scale. In addition, since the scale includes only 12 
tones, the sequence needs to be in mod 12. Now integer values can correspond to musical tones. 
For example, in "Iterations I" we chose the initial pitch as Bb, which corresponds to the integer O. 
Next, we enumerate each pitch ascending stepwise :from Bb to A. 

I~~. ~- h- bu • b: ~o ~. h· 
h- u 

1
0 

0 1 2 3 4 5 6 7 8 9 10 11 

Fipre 4. Integers Assigned to the 1'welve-Tone chromatic Scale; 
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Then, we can C011eSpOnd the initial set SO = {0,2,3} and its generations with the twelve-tone 
scale. For example, the initial set SO = {0,2,3} corresponds with the pitches Bb, C, and Db 
respectively. We can continue this process with the ensuing· generations of so. The resuk is a 
series of pitch groups yielding a sonic representation of the numeric sequence~ The following 
diagram shows so and its first two generations corresponded to notes. 

Ifke 
n ~. 

SO: 0 2 3 

I~~· u ~. lu • bu If: bu ~Q 

Sl: 0 2 3 2 4 5 3 5 6 

I ~ ~ .J;·I 0 .bo I ~.bu'J°1 0 .bo Ie 0 ·1 bo.bo I ~Jo\°lbo.bo I obo~o I 
S2: 0 2 3 2 4 5 3 5 6 2 4 5 4 6 7 5 7 8 3 5 6 5 ·7 8 6 8 9 

Fipre 5. Correspondence between Number Sequences and Pitches. 

Upon examining the pitch sequences, we see that self-similarity occurs .amottg the 
numerous three-pitch sets that spawn from the initial set {0,2,3} corresponding to {Bb, C, Db}. 
This self-similarity lies in the interval composition ofthree-pitch subgroups within the sequences. 
For example, the interval difference between C and Bb is a whole step, between Db and C is a 
half step. Thus, the interval composition of SO is a whole step followed by a half step. Upon 
examining the pitch sequences, we see that every third pitch preserves this interval relationship. 
Ifwe were to reconstruct our sequence by only including every third pitch, the resulting sequence 
would be the same as the previous. In fact, if our sequence consisted of only every 3"kth pitch, 
the previous sequence would result. This is the same muki-dimensionalquality displayed by the 
fractal number sequence. Clearly, the musical application of the number sequence preserves its 
fractal quality. 

To ultimately realize a composition, we must think about how our proceSs incorporates 
into the many different elements of musical construction. To make music we need rhythm (Pitch 
duration), dynamics (loudness), and form (framework). How can we use these elements to create 
music that depicts the fractal we constructed? After all, we have only conjured up a bunch of 
tones, and we must figure out how they meaningfully organize into a piece of music that exhibits 
fractal qualities. "Iterations I" attempts to accomplish this. 

The structure of "Iterations r' outlines the devised iteration proceSs. As the iteration 
process unfolds, the quantity of pitches increases and thus the activity and complexity of the 
music increases accordingly. The piece begins with solo flute announcing the initial set, SO = to, 
2, 3} = {Bb, C, Db}, followed by the first and second iteration generations. Just before the flute 
enters the third iteration generation, the piano makes its introduction as the accompaniment, 
independently reinitiating the initial pitch set SO. The piano then provides an accompaniment 
basis for the flute with the ensuing generations of our initiator. The following diagrams show 
how flute and piano introduce the pitch sequences: 
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Figure 6. Top: Flute Introducing SO and S1. Bottom: Piano IntrodUcing SO and S1. 

At this point, we can detect the composition's depiction of self-similar dimensions. The 
flute introduces 80 and 81 melodically (one pitch at a time) in an ascending fashion. We notice 
the piano also introduces 80 melodically, however the pitches descend, are in a much lower 
register, and are temporally augmented. In addition, the piano presents the ensuing generation 81 
harmonically (many pitches at once). These various depictions of our pitch generations give the 
listener alternate sonic perceptions of the sequences. The listener is hearing different layers of 
musical activity, which is perceived as multiple-dimensions of sound. The self-similarity is a 
product of the sonic integrity of 80 and its generations. Although the pitches are presented 
melodically, harmonically, at different times, speeds, and in different registers, the various 
techniques still produce a common sonority or harmonic quality. This is due to the integrity of 
three-pitch subgroups embedded in the constructed pitch sequences. Within each subgroup, the 
intervals between pitches remain constant. Thus, the structunil. similarity is sonically perceived. 
These multiple dimensions of self-similar sound reflect the geometry of a fractal. 

The music ensues with dialogue between the duo until flute and piano exhaust the pitch 
material of the third iteration group. At this point, a small interlude of solo piano occurs leading 
to the next section. Then, drawing from the pitch material of the fourth and final iteration 
generations the flute and piano enter a development section that leads to a climax. The fourth 
generation yields the most pitch material, enabling the creation of the greatest musical activity 
and justifying the climactic atmosphere of the section. Upon the arrival of the climax, the flute 
exhausts most of its pitch material from the fourth . iteration group, and the piano uses all. The 
climax is of particular importance, for it displays the depiction of the three-pitch subgroups in 
greatest variety: 
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Figure 7. Climax Measures from "Iterations 1". 

Notice the boxes outlining some of the harmonic and melodic portrayals of the three-pitch groups 
layered at different times, different speeds, and in different registers. This shows how the music 
itself depicts the geometry of our generated fractal and creates an aesthetic of an atmosphere with 

. multiple dimensions of sound. 
"Iterations P' takes us on ajourney, showing us the compounding development of our 

iteration procedure. The composition structurally and sonically depicts multiple levels of self­
similarity through use of the three-pitch subgroups embedded in the fractal pitch· sequences. 
These subgroups constitute the entirety of melodic and harmonic material, whereby through 
contrapuntal layering of the subgroups at different times and speeds, it sonic texture of multi­
dimensional depth is perceived. This multi-dimensional atmosphere is precisely what one would 
expect when encountering a fractal. 
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2.3 Geometry and DilneDSio. for "ItentioDS L" Since "Iterations I" contains fractal structures~ 
we should be able to determine its fractal dimension. Our sequence applied to the cbroniatic scale 
is analogous to sides on the Koch snowflake. The presence of only twelve pitches in the system 
is analogous to saying there are twelve "sides" to the music .. Th~ the geometry of our initiator is 
a dodecagon. The generator spawns three elements (sides) upon each side of the initiator~ and the . 
process continues in subsequent generations replacing each side with a copy of the generator. By 
recognition of the sequence in Mod 12 and correlating this to a vector space representation akin to 
the Koch snowflake, we are able to graphically represent the ftactal pitch sequence of ''Iterations 
1"[5]. 

F1pre 8: The "Itertitions I" Snow.flalre. 

To calculate ftactal dimension, we know the generator of the dodecagon consists of three 
elements. The generator replaces each side of the figure with sides that are 112.39417 times the 
preceding side. This yields a magnification factor of approximately 2.39417. Applying this to 
the definition of fractal dimension yields: . 

D = log (k) I log (M) = log (number of pieces) I log (magnification factor) 
= log (3) /log (2.39417) = 1.25838 .... 

Finally, to apply Theorem [1], again treat each pitch of the chromatic scale as one side. 
Then dim(A) = dim(B) = dim(C) = ... = dim(L). Therefore, the ftactal dimension of our pitch 
sequence is 1.25838. 

3. Conelusion 

Fractals are highly evocative structures in their depiction of multi-dimensional depth and 
design. Their role in music has yet to be determined, but the application of fractal geometry is 
expanding new grounds for music. The composition "Iterations P' utilizes fractal number 

. sequences and relates them to pitches, showing one of the many potential applications fractals can 
have in music. Still, not all doors have been opened, and the potential for depicting·fractals in 
music is as great as the imaginations of artists that wish to achieve them. 
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