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Key elements of the systems of proportions used in ancient sacred geometry will be shown to be the 
ratio of diagonal to edge of various of regular n-gon. The diagonals are shown to be edges of various 
species of star polygons related to the n-gon. These diagonals or edges are shown to be the roots of two 
species of polynomials derived from Pascal's triangle and related to the Fibonacci and Lucas sequences 
when the n-gon has unit radius. All diagonals of regular n-gdJ;ls are shown to have additive properties. 
Special attention is given to the heptagon. 

1. Introduction 

Through many cultures, star polygons were used as sacred symbols with the star of David and the Sri 
Yantra Hindu patterns as two examples. The fact that Venus traverses a five pointed star by making five 
closest approaches to Earth over an eight year cycle in the heavens as seen from the Earth was known to 
ancient civilizations. Also the designs of ancient sacred geometry use a small vocabulary of proportions 

such as "2, "3, the golden mean t = 1 + J5 and the silver mean e = 1 + "2 . We will show that all of 
2 

these constants can be related to the edge lengths of star polygons and that they are ultimately related to a 
sequence of numbers called silver means the firstofwhich is the golden mean. The geometry of the star 
heptagon will be found to be particularly interesting. We have previously shown that star polygons 
are also related to the chaotic dynamics of the logistic equation [1]. 

2. Star polygons 

A regular star polygon is denoted by the symbol {n/k} where n is the number of vertices and edges while 
k indicates that eachvertex is connected to the k-th vertex from it in a clockwise direction. Under certain 
conditions a regular star polygon can be drawn in a single stroke such as polygon {512} in Figure Ia or in 
more than one stroke as polygon {6/2} in Figure lb. Is there a simple rule that predicts whether the 
polygon is irreducible (can be drawn in a single stroke) or reducible (cannot be drawn in a single stroke)? 
The answer is simple: a polygon {n/k} will be irreducible if and only if n and k are relatively prime. 

Only connected stars are considered to be star polygons. For example, {612} actually corresponds to 
the connected 3-gon {3/1}. As a result of the fact that nand k must be relatively prime, there are as many 
regular n-gons as there are positive integers relatively prime to n denoted by the Euler phi-function ~(n). 

For example, there are ~(7) = 6 species of star 7-Bons and +(12) = 4 species of 12-gons. The three 
clockwise oriented 7 -gons are shown in Figure 2 with three identical but counterclockwise oriented 7-
gons not shown. Of the 12-gons illustrated in Figure 3 only {l2fl} and {I2IS} are actualI2-gons. They 
are the two clockwise oriented 12-gons with the two counterclockwise 12-gons not shown. 

The edges of a star n-gon are the diagonals of the regular n-gon. By determining the lengths of the n-3 
diagonals that can be drawn from a given vertex of a regular n-gon, including the edge, we are also 
determining the lengths of the edges of various species of star n-gons. Furthermore, when all polygons 
are normalized to radius equal to one, the diagonals and edges of any m-gon reappear in n-gons whenever 
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n is a multiple ofm. For example, in Figure 3 the edges of the triangle, square and hexagon appear as 
diagonals ofa regular 12-gon. In this way we are able to determine all of the star m-gons related to an n­
gon by considering all of the factors ofn. For example, consider the 12-gon. Itsfactor tree is, 

3--> 6 --> 12 <-- 4 <-- 2 . (1) 

The edges of the triangle reappear as diagonals of the hexagon and the 12-gon. Also the edges of the 
square reappear within the 12-gon. The factor 2 corresponds to the diameter {12/6} in Figure 4 and can 
be thought of as a polygon with two edges, referred to as a digon {211}. In some limiting sense a single 
vertex can be thought to be a polygon with a single edge of zero length {Ill}. If we add up the total 
number of star polygons corresponding to these factors we get 

<I>(l) + <1>(2) + <1>(3) + <1>(4) + <1>(6) + <1>(12) = 12. (2) 

These are all the star polygons related to the 12-gon. In addition to the single vertex and the digon, five 
of these have their edges oriented clockwise while five mirror images have retrograde edges. It can be 
shown that, in general, 

2: {b(k) = n 
where the summation is taken over the integers that divide evenly into n. 
Star polygons are connected to number theory in many ways. One striking example is due to 
H.S.M.Coxeter in which the star polygon gives an elegant proof of Wilson' s Theorem. 

Wilson's Theorem: For p a prime number, (P-I)! = -1 (mod p) or the integer (P-l)! + I is divisible by p. 

Proof: For any p-gon there are clearly (P-I)! factorial distinct p-gons. Since <I>(p) = p-I, p-l of them are 
regular while the others are irregular. Since the regular polygons are invariant under rotation while the 
irregular ones are not, each irregular configuration gives a new polygon under rotation about the center 
through the angle between adjacent vertices. So if there are N classes of irregular polygons, when these 
are rotated about the p vertices, there are Np irregular polygons. Therefore, 

(p-l)! = Np + p-l or (P-l)! + 1 = (N +1)p. 

And, as a result, (p-I)! + I is divisible by p or (P-I)! = -1 (mod p). 

3. Pascal's Law and Star Polygons 

Consider Pascal's triangle. 
Table 1 Pascal's Triangle 

1 I 
1 I 2 

1 2 1 4 
I 3 3 1 8 

1 4 6 4 1 16 
I 5 10 10 5 1 32 

1 6 15 20 15 6 I 64 

Starting from the left in Table 1 the diagonals: 111...,123 ... ,136 ... , etc. appear as columns in which 
each successive column is displaced, in a downward direction, from the previous column by two rows. 
The rows of Table 2 can be seen to be the diagonals of Pascal's triangle related to the Fibonacci 
sequence with the sum of the elements of Row n being the n-th Fibonacci number. This table, referred to 
as the Fibonacci-Pascal Triangle or FPT, is associated with the coefficients of a series of polynomials, 
F\(n), (the superscripts are the exponents of the polynomials) [2]. 
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Table 2. Fibonacci- Pascal Triangle 

nIk 1 2 3 4 5 Sum 
0 10 1 1 
1 11 1 x 

2 12 10 2 x2 + 1 
3 13 21 3 x3 +2x 

4 14 32 10 5 x4 +3x2 + 1 

5 15 43 31 8 x5 +4x3 +3x 

6 16 54 62 1° 13 x6 + 5x4 + 6x2 + 1 

7 17 65 103 41 21 x7 +6x5 + IOx3 + 4xl 

8 18 76 154 102 10 34 x8 + 7x6 + 15x4 + IOx2 + 1 
etc. etc, 

Each column in Table 2 begins with a 1 .. The numbers (not the exponents) are generated by the recursion 
relation: 

(n,k) = (n-l,k) + (n-2,k-l) 

where (n,k) denotes the number in the n-th row and k-th column. For example, 
(7,3) = (6,3) + (5,2) or 10 = 6 + 4. Also, beginning with 1 and x, each Fibonacci polynomial Fl (n) is 

gotten by multiplying the previous one, F 1 (n-l) by x and adding it to the one before it F 1 (n-2), 
e.g., Fl (3) = x Fl (2) + Fl (1) or x3 + 2x = x(x2 + 1) + x. 

Letting x = 1 in the polynomials yields the Fibonacci sequence: 
1 1· 2 3 5 8 ... The ratios of successive numbers in this series converge to the solution to x - l/x = 1 or the 
golden mean t which I shall also refer to as the first silver mean of type 1 or SMl (1). 

Letting x = 2 yields Pell's sequence (see Sec. 7.4): 
1 2 5 12 29 70 ... (e.g., to get a number from this sequence, double the preceding term and add the one 
before it). The ratio of successive terms converges to the solution of x - 1Ix = 2 or the number a = 1 + "2 
= 2.414213 ... , referred to as the silver mean or more specifically as the 2nd silver mean of type 1, SMJ(2). 

Letting x = 3 yields the sequence: 1 3 1033 109 ... (e.g., to get a number from the sequence, triple the 
preceding term and add the one before it). The ratio of successive terms converges to the solution to x -
1Ix = 3 which is the 3rd Silver Mean of type 1 or SMJ(3). 

In general letting x = N, where N is either a positive or negative integer, leads to an approximate 
geometric sequence for which, 

Xk+l = NXk + Xk.J , 

and whose ratio of successive terms is SMt(N) which satisfies the equation, 

x. -1Ix=N. (3a) 

When the polynomials in Table 2 have alternating signs they are denoted by F2 (x), and upon letting 
x=N, 

Xk+J = NXk - Xk.J , 
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and whose ratio of successive terms is SM2(N), silver means of the second kind, which satisfies the 
equation, 

x+ lIx=N. (3b) 

4. Lucas Version of Pascal's Triangle 

Fibonacci and Lucas sequences are intimately connected. The standard Fibonacci sequence, {Fn}, is: 1 1 
23 5 8 l3 ... while the standard Lucas sequence, {Ln}, is 1 347 11 18 .. where Ln = Fn-J + Fn+l . 

Adamson has discovered another variant of Pascal's triangle related to the Lucas sequence. In fact this 
Lucas - Pascal Triangle or LPT demonstrates that silver mean constants and sequences are part of an 
interrelated whole. Along with the FPT these tables are carriers of all of the significant properties of the 
silver means. 

To construct the LPT, create a new "Pascal's triangle" with 1 's along one edge and 2's along the other 
as shown in Table 3. 

Table 3. A Genetalized Pascal's Triangle 

2 
2 1 

2 3 1 
2 5 4 1 

27951 

As before each diagonal becomes a column of the LPT in which the elements in each successive column 
are displaced downwards by two rows. The exponents of the corresponding polynomials are sequenced 
as for the FPT. You will notice that the numbers in each row sum to the Lucas sequence and therefore I 
refer to the associated polynomials as Lucas polynomials LJ(n) to distinguish these from Lucas 
polynomials with alternating signs denoted by Lz(x). 

Table 4. Lucas - Pascal's Triangle 
n/k 1 2 3 4 Sum 

° 2° 2 2 

1 11 1 x 

2 e 2° 3 x2 +2 

3 13 31 4 x3 + 3x 

4 14 42 2° 7 - x4 +4x2 +2 

5 15 53 51 11 x5 +5x3 + 5x 

6 16 64 92 2° 18 x6 + 6x4 + 9x2 + 2 

7 17 75 143 71 29 x 7 + 7x5 + 14x3 + 7x 
etc. etc. 

Beginning with 2 and x, a Lucas polynomial is generated by the recursive formula : 

for example LJ(3) = xL(2) +LI (1) or x3 + 3x = x(x2 + 2) + x . 
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Setting x == 1,2,3, ... in the Lucas polynomials generates a set of Generalized Lucas sequences that are 
related to the SM1(N) constants. Many interesting properties of these sequences are described in [1]. 
They also lead directly to an infmite set of generalized Mandelbrot sets [1]. 

5. The relationship between Fibonacci and Lucas polynomials and regular star polygons. 

We have discovered a simple relationship between the roots of both the Fibonacci and Lucas polynomials 
with alternating signs and the diagonals of regular polygons when the radii of the polygons are taken to 
be 1 unit. 

For odd n, the positive roots of the n-thLucas polynomial, L2(n), with alternating signs equal the 
distinct diagonal lengths dk for k> 1 and edge dl of the n-gon of radius 1 unit where 

<l == 2sin k1t/n for k == 1,2, ... , (n-l)/2 (4) 

Example 1: For a pentagon, dl and d2== 't dl where dl == (...J(l+ 't2»/t are the roots of~ (5): 

x5 - 5x3 + 5x = 0 , 

This gives the familiar result that the ratio of the diagonal to the edge of a regular pentagon is the golden 
mean't. 

Example 2: For a heptagon, db d2 = pdl and d3 = adl where dl = ...J[(pa-l)/pa] are the roots ofL(7) 
where p = l.8019377 ... and a = 2.2469796 ... : 

The numbers have additive properties much as the golden mean and this will be discussed in the next 
section. 

For even n, the positive roots of the (n-l)st Fibonacci polynomial with alternating signs 
F 2 (n-l), equal the lengths dk of the distinct diagonals of regular n-gons of radius 1 unit where 

dk = 2sinlm/n for' k = 1,2, ... , (n-2)/2. (5) 

For polygons with even n, one of the diagonals is twice the radius or 2. This diagonal is not one 
of the roots. 

Example 3: For a hexagon, dl and d2 = ...J3dl where dl =1 are the roots ofF2(5): 

Example 4: For an octagon, d), d2 = ...J (S...J2)dl and d3 = Sdl where dl = ...J("\./2/S) are the roots ofF2 (7) : 

The results for several polygons are summarized in Table 5. The diagonals are normalized to an edge 
value of 1 unit by dividing by dl . 
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Table 5. Lengths of N onnalized Diagonals of n-gons 

n-gon Lengths of normalized diagonals dJd\ 
n d\ did\ dJdl dJd\ dsld\ dJd\ 
3 ...J3 
4 ...J2 ",,2 
5 5 114.-1/2 • 
6 1 ",,3 2 

7 Jpo-I p cr 
pO" 

8 ",,<",,2/0) "" (0",,2) 0 ""( 20",,2) 2 

10 111: 5 114 .1/2 .2 5 \14 .3/2 2 
12 ...J (2-",,3) "" (2+",,3) "" 2"" (2+",,3) ""3",, (2+",,3) 2+",,3 2 

We find the curious property that both the sum and product of the squares of the diagonals ofan n-gon 
(including the edge) equals an integer and that this integer equals n for odd values ofn. For example, d\2 
+ d22= 5 and d\2 x dz2= 5 for the pentagon, while, d/ + d/ + d/= 7 and d\2 x d/ x d/ = 7 for the 
heptagon. 

Not only are the diagonals of regular polygons determined by Equations 4 and 5, but the areas A of the 
regular n-gons with unit radii are computed from the elegant formula, 

A n. 27C 
=-sm-

2 n 

From this equation the square is found to have area 2 units while the 12-gon has area 3 units. It can also 

be determined that if n approaches infinity, then A approaches n, the area of a unit circle. 
Notice that the key numbers in the systems of proportions based on various polygons present 

themselves in Table 5: '[-pentagonal system; e and"':2 - octagonal; "':3, 1+ "':3, and 2+"':3 - dodecahedral; 
p and cr - heptagonal, and these are pictured in Figure 6 .. 

6. The Relationship between Number and the Geometry of Polygons 

Since the unique diagonals of an n-gon correspond to the roots of a polynomial, the fact that these 
diagonals recur in any m-gon where n is a multiple of m serves to factor the polynomial into polynomials 
of smaller degree with integer coefficients. For example, the polynomial F2 (9) of the IO-gon factors into 
the product ofL2 (5) of the 5-gon and Fz (4), i.e., F2 (9) = L2 (5) X F2 (4) or, 
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We can state this result as a theorem: 

Theorem 1: The polynomial F2 (2n-l) of any 2n-gon factors into the product of~ (n) and F2 (n-l). 

By the same reasoning as for the 10-gon, the factor tree of Expression 1 can be used to factor F 2 (11), 
the polynomial representing the 12-gon. Of the six unique diagonals of the 12-gon, one occurs in the 3-
gon (equilateral triangle); an additional one appears in the 6-gon (hexagon), another appears in the 4-gon 
(square), and two additional diagonals occur in the 12-gon. By Theorem 1, the polynomial of the 12-gon 
factors into, 

F2 (11) = k (6) x F2(5) 

corresponding to the factoring by the hexagon polynomial F2 (5). The hexagon polynomial can then be 
decomposed further as, 

F2 (5) = k (3) X F2 (2) 

corresponding to factoring by the tri~Ie k (3). These two factorizations can be combined to obtain, 
~. . 

F2 (11) = k (3) XF2 (2) x k (6) 

Finally k (6) factors into, 

L2 (6) = (x2 - 2) (x4 - 4x2 + 1). 

The diagonal (edge) of the triangle comes from L2 (3), the additional diagonal (edge) of the hexag-on from 
F2 (2), the diagonal of the square is the root of the first factor ofk (6) while the two additional diagonals 
of the 12-gonare the roots of the second factor ofk (6). Finally, the diagonal of the digon is the 
diameter of the 12-gon. This accounts for the six distinct diagonals of the 12-gon. 

In what follows the symbol ~ will be used for diagonals of regular polygons normalized to a unit edge 
rather a unit radius. 

7. Additive properties of the diagonal lengths 

Similar to 't and S, the diagonals of each of these systems of n-gons have additive 
properties. Steinbach has derived the following Diagonal Product Formula (OPF) that 
defines multiplication of the diagonal lengths in terms of their addition [3, 4], 

h 

DhDk = 1: ~-h+2i, where h ~ k. 
i=O 

where the diagonals have been normalized to polygons with edges of Dt = 1 unit It is helpful 
to write these identities in an array as follows: 
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ol= 1 +03 

0 20 3 =02+04 
0 20 4=03 +OS 
020S =04 + 0 6 

D32 = 1 + 0 3 + Ds 
D3D4 = O2 + 0 4 + 0 6 

D3DS = D3 + Os +07 

D42 = 1 + 0 3 + Os + 0 7 (6) 
D~s = D2 + D4 + 0 6 + Ds 

These formulas are applied to the pentagon and the heptagon. 

Example 1: 

For the pentagon, O2 = D3 = t and these relationships reduce to the single equation, 

Example 2: 

The proportional system based on the heptagon is particularly interesting [4], [5]. For the 
heptagon, D2=OS=P and D3=04=cr and these relationships reduce to the four equations, 

2 . 
O2 = 1+03 
02D3 =D2 +04 
0/= 1 +D3+0S 

or p2 = 1 + cr 
or pcr = p + cr 
or cr2 =I+cr+p 

What is astounding is that not only are the products of the diagonals expressible as sums but so are the 
quotients. Table 6 illustrates the quotient table for the heptagon. 

Table 6 Ratio of diagonals Oeft Itop) 
1 p cr 

1 1 l+p-cr a-p 
p p 1 p-l 

a a a-I 1 

As a result of DPFand the quotient laws, Steinbach has discovered that the edge lengths of each polygon 
form an algebraic system closed under the operations. of addition, subtraction, multiplication, and 
division. Such algebraic systems are known asfields and he refers to them as goldenflelds. 

8. The Heptagonal System 

The heptagonal system is particularly rich in algebraic and geometric relationships. The 
additive properties of OPF and Table 6 for the heptagon are summarized: 

p+cr = pcr 
lip + lIcr = 1 
p2 = l+cr 
cr2 = I+p+cr 
p/cr = p-I 
cr/p = cr-I 
lIcr = cr-p 
lip = 1+p-cr 

(Compare this with t+t2 = t t 2) 
(Compare this with lit + lIt2 = I) 

(7) 
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The algebraic properties of each system of proportions are manifested within the segments of the n­
pointed star (the n-polygon with all of its diagonals) corresponding to that system. For example, the 
pentagonal system of proportions is determined by the 5-star while the octagonal system is determined 
by the 8-star. Figure 5 illustrates the family of star heptagons. Notice that the short diagonal of length p 
(the edge is 1 unit) and the long diagonal oflength 0' are subdivided into the following segments 
depending on p and 0': 

p = 1/ P + 1/ pO' + 1/0'2 + 1/ pO' + 1/ p and, 
0' = 1/0' + p/cr2 + 1/0'2 + 1/ pO' + 1/0'2 + p/0'2 + 1/0' 

Thus we see at the level of geometry that the graphic designer encounters the same rich set of 
relationships as does the mathematician at the level of symbols and algebra. 

The following pair of intertwining geometric O'-sequences and corresponding Fibonacci-like integer 
series exhibit these additive properties: 

... 1/0' p/O' 1 P 0' O'p 0'2 0'2p d 0'3p 0'4... (8a) 
111235611142531... (8b) 

The integer series is generated as follows: 
1) Determine the first five terms X\X2X3X4Xs beginning with 111 
2) Let X2+X\~ and X4+X\=V, i.e., 1+1=2 and 2+ 1 =3 to obtain 11123 
3) Repeat step 2 beginning with the X4XsX6, i.e., from 123,2+3=5 and 5+ 1 =6 to obtain 

12356 
4) In general, for n > 3, Xn = Xn-2 + Xn_1 and Xn+! = Xn-3 + Xn . 

The ratio of successive terms of this sequence equals, alternatively p and O'/p while the ratios of 
successive terms of the integer series asymptotically approaches p and O'/p, e.g., 25/14 = 1.785 ... ~ P 
while 31125 = 1.24 ~ O'/p. Also 0' is obtained as the product of these ratios, i.e., 31/14 = 2.214 Ri 0'. Just as 
every power of the golden mean 't can be written as a linear combination of 1 and't with the Fibonacci 
numbers as coefficients [6], every power of 0' can be written as the following linear combinations of 1,p,0' 
where the integers of Sequence 8b appear as the coefficients: 

0' = 10' + Op + 0 
0'2 = 10' + Ip + 1 
0'3 = 30' + 2p + 1 
0'4 = 60' + 5p + 3 
0'5 = 140' + IIp + 6 
0'6 = 310' + 25p + 14 

(9) 

Notice that the first coefficient in the equation for O'n+1 is the sum of the three coefficients of the equation 
for ~ while the second coefficient is the sum of the first two coefficients and the last coefficient is the 
same as the first of the previous equation, e.g., in the equation for 0'4: 6=3+2+ 1,5=3+2, and 3=3. 

A geometric analogy to the golden mean can be seen by considering the pair of rectangles of 
proportions p: 1 and 0': 1 in Figure 6. By removing a square from each, we are left in both cases with 
rectangles of proportion p:O' although oriented differently. 
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9. Conclusion 

With the aid ofPasca1's triangle, the golden mean and Fibonacci sequences were generalized to a family 
of silver means. The Lucas sequence was then generalized with the aid ofa close variant of the Pascal's 
triangle. These generalized golden means and generalized F- and L-sequences were shown to fonn a 
tightly knit family with many properties of number. Perhaps it is for this reason that they occur in many 
dynantical systems. We have shown that all systems ofproportioll are related toa set of polynomials 
derived from Pascal's triangle. These systems are related to both the edges of various species of regular 
star polygon and the diagonals of regular n-golls, and they share many of the additive properties of the 
golden mean. The heptagon was illustrated in detail. 
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{5/2} {6/2} 

Figure 1. The {5/2} star can be drawn in a single stroke; the {6/2} star cannot be drawn in a 
single stroke. 

(7/1) (712) (7/3) 

Figure 2. Three positively oriented 7-gons 
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(a) 

PH-IIZI 

Ca) 

Pt}- III 

m 
(b) 

Ficun 22.3 The Ihn:e positively orientcclnar 7 -JOI\S. 

{¥}-/61 
(b) 

m 
Ie) 

{lH- HI 

Cel 

PI} Pi}- (21 

Figure 3. The family of star polygons related to the 12-gon. Note the small arrows indicating 
orientation. 
Figure 4. The n-gons for n = 3,4,5,6,7,8,10,12 with edge equaIto 1 unit showing their diagonals. 
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Figure 5. The diagonals ofa heptagon subdivide themselves into lengths related to the lengths of 
the two principal diagonals panda. 

P 

If:p s 

If 

P:1f s 

Figure 6. When a square is removed from rectangles of proportions 1: p and 1: a, rectangles of 
proportion p:a in different orientations remain. 
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