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Abstract 

Polynomiography is the art and science of visualization in approximation of zeros of complex polynomials. It 
allows one to obtain many colorful images of polynomials. These images can subsequently be re-colored in many 
ways to create artwork. Polynomiography has tremendous applications in the visual arts, education, and science. 
Artistically, it can be used to create diverse set of beautiful images reminiscent of the intricate designs and modern 
art. Educationally,polynomiography can be used to teach mathematical concepts. Scientifically, it provides a tool, 
not only for viewing polynomials, present in virtually every branch of science, but also a tool to discover new 
theorems. The goal of this paper is to present some artwork produced via polynomiography of a few polynomials 
arising in science as well as a few considered to arrive at beautiful but. anticipated designs. These include a 
Chebyshev polynomial, a polynomial arising in physics, one in knot theory, and some based on roots of unity. The 
purpose of the paper is doing art on these special polynomials. But the reader will realize that these images also 
help engrave certain attributes of these polynomials. Moreover the beauty of these images suggests an infinite jewel 
box of polynomials yet to be discovered and visualized through polynomiography by future polynomiographers. 
The ultimate goal here is to suggest that polynomiography is indeed a new art form that can be thought of as 
''painting by numbers" or ''painting by points." In a sense it is one of the most minimalistic art forms. 

1 •. Polynomiograpby 

1.1. Introduction. 

Polynomiography is defmed to be "the art and science of visualization in approximation of zeros of 
complex polynomials, via fractal and non-fractal images created using the mathematical convergence 
properties of an infinite family of iteration functions." An individual image is called a "polynomiograph." 
These images are obtained using variety of algorithms. In this paper I present some artwork based on 
homemade prototype polynomiography software. Polynomials form a fundamental class of functions that 
arise in virtually every branch of science. Polynomiography has many facets and could appeal to many. 
As an artistic tool everyone can use it: children, middle school or high school students, and the general 
public. Using polynomiography software could be no more complicated than using an ordinary camera: 
we choose a subject . to photograph, adjust· the . settings, and then shoot a picture. Except that in 
polynomiography we shoot pictures of polynomial equations, and the camera is the polynomiography. 
software. But we also have the ability to zoom in or re-color the initial polynomiographs employing our 
own creativity and imagination using the polynomiography software. The range and diversity. of images 
obtained through polynomiography is indeed quite extraordinary and surprising. 

Polynomiography is not the only technology for creating computer-generated art. It does for instance 
overlap with fractals in the sense that, according to the new definition, some previously given fractal 
images may now be called polynomiographs. But polynomiographs are not necessarily fractal images. 
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The word "fractal" coined by the Benoit Mandelbrot refers to sets or geometric objects that are self­
similar and independent of scale. Some fractal images can be obtained via simple iterative schemes 
leading to sets known as Julia set and the famous Mandelbrot set. The simplicity in the creation of such 
images has resulted in numerous web sites where amateurs and experts exhibit their fractal images. The 
fact that a polynorniograph may not be fractal is one of the reasons why it was necessary to defme a new 
name. A second reason is to emphasize its objective and means, i.e. visualization of polynomials via 
approximation of its roots and the way in which the approximation is carried out. Even when a 
polynomiograph is a fractal image it does not diminish its uniqueness. Indeed even within the fractal 
images derived from polynomiography there lies more variety, diversity, control, creativity, as well as the 
element of surprise than typical fractal images based on mere iterations. Polynomiography makes it 
possible to consider a new problem that I call, the "Reverse Root-Finding": given a set of points find an 
iteration function that will result in a desirable polynomiograph. The polynomiographs given in Figure 1 
and Figure 2 are such examples. 

The foundation of polynomiography is based on a well-defined goal: visualization in approximation of 
zeros of polynomials. Using various properties of convergence, as well as variety of coloration schemes, 
it provides two-dimensional images of the process of approximation, viewed through the lenses of an 
infinite family of iteration functions. An iteration function is a rule that assigns to each given point in the 
Euclidean plane another point in the plane. Starting with a given point as input an iteration function 
repeatedly generates a new output, which is fed back to the iteration function as a new input. Over a 
period of time one can trace the history of the initial input as it moves from one location to another. 
Polynomiography makes use of different schemes to color a point based on its history. Leaving aside the 
artistic aspects in polynomiography, I remain convinced that it will bring new insights into the ancient 
problem of root-finding, even for the experts in the field of root-fmding. 

A polynomial maybe completely characterized by a finite collection of points in the Euclidean plane. 
These points are its "roots" or "zeros." Each root "rules" a certain "territory." Thus the roots divide the 
Euclidean plane into regions of their own territories. The rule according to which the territories are 
determined is carried out according to an iteration function. And there are infinitely many iteration 
functions. Since a polynomial is characterized by its roots or its coefficients, polynomiography can be 
viewed as "painting by points," or "painting by numbers." In this sense it is one of the most minimalistic 
ways to create artwork. But even as many as ten, twenty or thirty points can produce such fantastically 
complex, yet diverse set of images that no human being could produce in a life time 

A general complex polynomial of degree n is an expression of the form 

where n is a natural number, or zero, and an' ... ' a o are complex numbers, its coefficients. According to 

the Fundamental Theorem of Algebra, a polynomial of degree n, with real or complex coefficients, has n 
real or complex zeros (roots) that mayor may not be distinct. The problem of approximation of zeros of 
polynomials, considered even by the Sumerians (third millennium B.C.), has been one of the most 
influential problems in the development of several important areas in mathematics (see [22] for a survey). 
Polynomiography is a new approach to solve and view this ancient problem, while making use of new 
algorithms and today's computer technology. Polynomiography is based on the use of one or an infinite 
number of iteration functions designed for the purpose of approximation of roots of polynomials. An 
iteration function is a mapping of the plane into itself and can be viewed as a machine that approximates a 
zero of a polynomial by an iterative process that takes an input and from it creates an output that in turn 
becomes a new input to the same machine. 
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2. A Mathematical Foundation of Polynomiograpby 

To do polynomiography we need to select a polynomial and then an iteration function. The best-known 
iteration function for fmding the roots of a polynomial is the Newton iteration function. But this is only 
one iteration function and hence very limited. What I have used as the main source of iteration functions 

is a fundamental family of iteration functions called the "Basic Family," represented as (Bm (Z) }:=2 . 
The algebraic development and some optimal properties of the Basic Family are described in [7] and [8]. 
To describe the formula for the members of the Basic Family consider p(z) a polynomial of degree 

n;:: 1 with complex coefficients. Set Do(z)== 1, and for each natural number m > 1, define 

p'(z) p"(z) p(m-I)(z) p(m)(z) 

2! (m-l)! ---;nr-

p(z) p'(z) 
p( .. -Il(z) 

(m-l)! 

Dm(z) =det 0 . p(z) 
..elQ 

2! 

0 0 p(z) p'(z) 

where det(·) represents determinant. For each m ;:: 2, define 

Bm (z) == z - p(z) Dm-2 (z) . 
Dm_1(z) 

Thefrrst member of the Basic Family, B2(z) , is Newton's function, andB3(Z)is Halley's function. For 

the history of these two iteration functions see [22], [23]. It is also possible to describe the formula 
recursively. The Basic Family has numerous fund,ameiltal properties. It is closely related to a nontrivial 
determinantal generalization of Taylor's theorem, see [10]. For the multipoint version of the farnilyand 
their order of convergence see [10] and [9], respectively. For a detailed list of theoretical and 
computational properties see [9]-[17]. In [16] I exhibit many images and give more detailed description of 
potential applications of polynomiography. There are two basic but very important properties of the Basic 
Family. The first one is that we can select any natural number m greater than or equal to 2 and then apply 
the fixed-point iteration 

ak+1 = Bm(ak ) , k;:: 0 

where ao is a starting complex number. When the starting point is close to a simple root of the 

polynomial the fixed-point iterates converges to the root having order m (i.e. in each iteration the 
number of correct digits, approximately, gets multiplied by m). The higher the order of convergence the 
fewer the number of iterations needed to locally approximate a root. Having order of convergence equal 
to 2 or 3 may not make much of difference locally, but globally, and certainly in tenns of 
polynomiography the difference between order two and order three methods is analogous to the difference 
between using two completely different lenses to do photography. Using the iteration function Bm (z) we 

can generate the sequence of fixed-point iterates for each point within any given rectangular region and 
trace its history. In practice we will divide the rectangular region into pixels so that we will deal with a 
finite number of points. We then apply various color-coding to these pixels to get an image. Each iteration 
function works like a lens. Thus the more iteration functions, the more lenses we have for viewing 
polynomials. But there are other benefits in using families of iteration functions and particularly, the 
Basic Family. 
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To describe another fundamental property of the Basic Family, consider the set of distinct roots of p(z). 
The elements of this set partition the Euclidean plane into Voronoi regions of the roots and their 
boundaries. The Voronoi region of a root is a convex polygon defined by the locus of points that are 
closer to this root than to any other root. The boundary of the Voronoi regions is the locus of points that 
are equidistant from two distinct roots. This is a set of measure zero consisting of the union of finite 
number of lines. Given a complex number a , the Basic Sequence at a is defined as 

{Bm(a),m = 2,3, ... }. Now given p(z), for any input a not in the boundary of the Voronoi regions, the 

Basic Sequence is well defined and converges to some root. It can also be shoWn that the root to which 
the Basic Sequence converges is in fact the closest root to the given input. This gives another scheme for 
coloring. 

2.1. Basins of Attractions and Voronoi Region of Polynomial Roots 

The basins of attraction of a root of p(z) with respect to the iteration function Bm (z) are regions in the 

complex plane such that given an initial point within them the corresponding sequence of fixed-point 
iterates will converge to that root. The boundary of the basins of attractions of any of the polynomial roots 
is the same set. This boundary is known as the Julia set and its complement is known as the Fatou set. The 
fractal nature of Julia sets and the images of the basins of attractions of Newton's method are now quite 

familiar for some special polynomials, e.g. p(z) = Z3 -1 (see [5]). Mandelbrot's work (see [18]) in 

particular popularized the Julia theory [6] on the iteration of rational complex functions, as well as the 
work of Fatou [4], and led to the famous set that bears Mandelbrot's name. Peitgen et al. [20] undertake a 
further analysis of fractals. Mathematical analysis of complex iterations may be found in Peitgen and 
Richter [19], Devaney [2], and Falconer [3]. 

Although the fractal nature of the Julia sets corresponding to the individual members of the Basic Family 
follows from the Julia theory on rational iteration function, that theory does not predict the total behavior 
of specific iteration functions on the complex plane. In particular, the behavior of the Basic Family, 
individual members or collectively is not a consequence of Julia set theory. 

3. Polynomiography of Some Special Polynomials 

In this section I will present some polynomiographs corresponding to a few polynomials. The purpose of 
this section is to only give a flavor of the power and diversity of polynomiography. For more images and 
their surprising diversity I refer the reader to my web site www.polynomiography.com. In 
particular, [16] describe polynomiography in more detail and offers many more of my artwork 

3.1. Polynomiography of Roots of Unity. The first classes of simple polynomials that come to mind are 

those based on the roots of unity, i.e. solutions to p(z) = ZR -1. If we chose n to be 20 we expect to get 

twenty roots equally spaced on the unit circle. If we now consider p(z) = (2zt -1 then the 

corresponding roots will be at a circle of radius half. And if we multiply the roots of unity for n=20,.and 
the roots of the latter with n=lO, then we willarrlve at a polynomial with 30 roots. The following figure 
shows some polynomiographs of this very simple polynomial. The first two images are created using 
properties of the Basic Sequence, while the right-most image makes use of a particular member of the 
Basic Family and coloring based on of the fixed-point iterations. 
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Figure 1: Polynomiographs of the product [(2Z)10 -1] X (Z20 -1) . 

The following polynomiograph was inspired by a Persian carpet and was produced using roots of unity 
and their rotations. The image in turn is being turned into a carpet two meters in diameter. 

Figure 2: Polynomiograph of a degree 36 polynomial. 

The next polynomiograph is one is obtained from a high degree root of unity using the Basic Sequence. 

Figure 3: "Statue of Liberty." 
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3.2. Polynomiography of a Chebyshev Polynomial. Polynomiographs here are those of a fifth degree 
Chebyshev polynomial using either the properties of Basic Sequence or a particular member of the Basic 
Family. 

Figure 4: Polynomiographs of T(z) = 16z5 - 20z 3 + 5z. 

3.3. Polynomiography of a Polynomial in Physics. The next set of images come from a polynomial 
arising in physics. Nature has its own beautiful polynomials. 

Figure 5: Polynomiographs of a Physicists' polynomial Z21 + 5Z14 - 22z 7 /15 -11/675. 

3.4. Polynomiography with a Polynomial in Knot Theory. The next two images are based on 
Alexander polynomial arising in knot theory. The original images are rotated. The "baby" image was 
subsequently re-colored to give the desired effect (the hands). 

Figure 6: "Butterfly", and "Handling a Baby" from Z6 - 3z5 + 4z4 - 5z 3 + 4z 2 - 3z + 1. 
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4. Concluding Remarks and Future Work 

I believe that through various software programs not only polynomiography could grow into a new art 
form for both professional and non-professional art making, but also as a tool with enormous applications 
in the teaching of art and mathematics. While a polynomiography software can be used to teach both art 
and mathematics more effectively, another can be used for the visualization of polynomial properties by 
an advanced researcher. Polynomiography software could· be used in the mathematics classroom as a 
device for understanding polynomials as well as in the visualization of theorems pertaining to 
polynomials. As an example, high school students studying algebra and geometry could be introduced to 
mathematics through creating designs from polynomials. They would learn to use algorithms on a 
sophisticated level and to understand mathematics of polynomials in its relationship to pattern and design 
in ways that cannot be approached abstractly. At a higher educational level, e.g. calculus or numerical 
analysis courses, polynomiography allows students to tackle important conceptual issues and gives the 
student the ability to understand modem discoveries such as fractals. Explorations of artistic, educational 
and scientific applications of polynomiography are among my primary, present and future, plans. In 
particular, in the future I will introduce software and books on the subject of polynomiography. The 
interested reader may visit www.polynomiography . com for more information. The web site also 
includes a Java version of polynomiography software where the visitor can produce hislher own images 
and get a flavor of how the software works. The software however is a limited version of the PC version 
of a homemade polynomiography software. 
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