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Abstract 
According to the well-known Galileian approximation (near Earth's surface, ignoring air resis­
tance), the trajectory of a freely falling body such as a ball or drop of water isa parabola; but what 
of the many drops of water springing from a fountain (under equal pressure but at different angles to 
the horizontal) - what describes its over-all proftle? Apparently unrelated, the usual shape of a 
times table is a semi-square since the commutivity of ab = ba makes the other half of the square 
redundant; are there different naturally-motivated shapes in which to display such facts of elemen­
tary arithmetic? In particular, what if the multiplication is in a finite modular system? Surpris­
ingly, the two questions tum out to be related and lead to Mobius strips in special cases. 

1. The Fountain from Florentine Pythagoreanism to Newton's Physics 

The 16th centwy Florentine Camerata was by intent concerned with reviving or giving 
rebirth (renasciamento) to the culture of classical Greece, yet its results often led down new path­
ways. Its leader, Vincenzo GaIilei, was attempting to revive the practices of Greek drama by use of 
XOpo~ and 0pXTJO't'pa but wound up becoming the composer of some of the first Italian operas, 
and his lute book of 1584 was one of the first music publications to experiment with equal tempera-
ment (i.e. using Stevin's new irrational 12th roots of2 rather than Zarlino's classical ratios of small 
whole numbers) [1]. 

GaIileo Galilei, Vincenzo's better-known son, was arguably the reverse: by intent a modern 
empirical experimentalist who occasionally inadvertently revived some ancient Pythagorean the­
ories, as when he discovered his law of freely-falling bodies. The ancient Greeks had viewed fi­
gurate numbers as growing by successive addition of similar regions; in the case of square num-
bers, these were r-shaped rVWIJ.OL of successive odd-numbered lengths so that 12 = 1, 22 = 1+3, 
32 = 1+3+5,42 = 1+3+5+7, etc., as shown atleft below. What Galileo discovered by rolling balls 
down incline planes was that they would pass through 1,3,5, 7, etc. units of space during succes-
sive equal units of time, as at right Knowing theit'sUms yielded squares he formulated s = -lct2, 
the ball's spatial distance travelled (situs s) being proportional to the square of the elapsed time 
(tempus t), the proportionality factor k being dependent upon angle of inclination and choice of 
measurement units; in the case of a vertical drop with s -in feet and t in seconds, he found k:::::: 16. 

When I decid~ to become a teacher, I did so with the intent that my students and I would 
feel free to correct one another in real time (like the journal referee process but much faster - "in­
stant karma"). The first such correction I experienced occurred when, as a novice, I uncritically 
lifted an illustration from a book by the master Hermann von Baravalle (who was on the faculty of 
the original Waldorf school in Stuttgart in the 1920's, emigrated to the United States in the 30's, 
and was instrumental in founding most of the original Waldorf schools in this country in the 40's, 
contributing numerous articles to The Mathematics Teacher, and.often cited by Martin Gardner in 
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his columns in the Scientific American). In its pre-war version, Das Reich geometrischer F ormen 
[2], p. 28, the figure consisted of parabolas through a common point drawn by using square grid 
paper to move first 5,3,1 units up and then 1,3,5,7, etc. units down, while moving a set number 
of units to left or right, as shown below. The text simply stated that the results "correspond to the 
laws of free fall" since they obey Galileo's law in their same vertical movement (while remaining 
unaffected in their various horizontal movements). In its post-war version, Geometrie als Sprache 
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der Formen [3] (the source of his American pupil Col. Beard's Patterns in Space [4]), the same 
drawing appeared as Fig. 271 but the text had been fatefully extended to refer to the collection of 
such parabolas as describing the trajectories of droplets of water in a fountain (Springbrunnen). A 
(typically back-row) student instantly nailed me by saying "Fountains aren't flat on top!" And 
indeed, to appear as above,jets at angles departing from the vertical would need to emerge under 
ever increasing pressures to reach the same maximum altitudes making fountain ''flat on top," 
approaching impossible infinite pressure when emerging in the horizontal direction. Jets emerging 
from a natural fountain under equal pressure from an ideal spherical nozzle would give a collective 
profIle that is somehow rounded, not flat - but how? What is their true profile shape? The 
student question was from Dana Williams (now on faculty of the Northridge Waldorf school, 
Highland Hall), and the physics colleague who helped me answer it was James Huston (then at 
High Mowing, Wilton, N.H., and subsequently on faculty of Wentworth University in Boston). 
This presentation is dedicated in joint gratitude to them, and is based on letters which grew out of 
discussions with them and others, excerpts from which were printed (with permission) in several 
issues of an informal research journal which I edited quarterly from 1972 to 1982 [5,6,7,8,9]. 

If we imagine the fountain's source placed at the origin (0,0) of a Cartesian coordinate sys­
tem with typical jets leaving at angles 8 = 00, 15°, 300, 45°, ... all at same initial velocity V 0, and 
the central jet (at 8 = 90°) achieving maximum height h, then the trajectories of droplets in its pro­
file plane may be described as loci of points (x,y) satisfying 

vi + Vy2 = V~, Vy I Vx = tan e, o 0 0 0 

V x = V Xo remaining constant throughout 
while Vy de- or accelerates due to gravity (Galileo's virtU di gravit6). 

Then, according to the law of conservation of energy, we must have the total 
Kinetic + Potential at release (0,0) = Kinetic + Potential at peak (Xp,yp) 

• 1 ,,,2 2 1 ",2 I.e. 2'm\ Y x + Vy ) + 0 = 2'm\ Y x + 0) + mgyp 
o 0 0 

whence yp = V~o / 2g or V~ sin2S / 2g (the masses cancelling out); 

and since at peak also VYp = Vyo - gtp = 0 
while any xn = V x tn where tn is time for drop to reach (xn,y J from (0,0), 

o 

it follows that tp = V Y 0 / g and xp = V Xo V y 0 / g or V ~ cosO sinS / g, 

which for e = 90° gives highest point (xp,yp) = (0, V~/2g) = (O,h). 
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This allows us to work graphically with the simple height h, and it is a straight-forward ex­
ercise (details of which are given on p. 5 of [5]) to show that the locus of all parabola peaks is an 
ellipse 2h wide (6 = ±4Y) and h high (6 = 90°) centered at (0, !h), with tangent y = h as common 
directrix, focal points describing a circle x2 + y2 = h2 centered at (0,0), and lastly the sought-for 
envelope a parabola y = h - x2/4h, as shown in First View below. 

Directrix 

First View 

To describe the individual jets, we begin with the parametric equations x = V Xo t (constant ki­

netic) and y = Vyot - !gt2 (kinetic accelerated downward), then substitute t = xlVxo to obtain y = 

Vyo(xNxo) - !g(xNxo)2 = xtan6 - x2/4hcos28 which can be shown to be a parabola open down­
ward y = hsin28 - (x - 2hsin8cos6)2/4hcos28 = hsin26 - (x - hsin26)2/4hcos26 having peak at 
(Xq,yq) and focus at (xq, y<rhcos28) lying respectively on the ellipse and circle claimed above. In 

particular, the jet at 6 = 0° is given by y = -x2/4h, congruent to the envelope but lowered h units. 
h 

Second View 

When the same parametric e<Juations are expressed in terms of trigonometric functions as x = 
VXot = (V 0 cosS)t and y = VYot - 2gt2 = (V 0 sin6)t- !gt2 but the angles of release now eliminated 
by substituting sin2S = l-x2N~2, we obtain the family of circles on next page given by equation 

x2 + (y + tgt;)2 = V;t;. 
These expand linearly in radius while falling quadratically (acceleratedly) in time like fireworks. 
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Third View 

2. The Quest for Alternative Natural Shapes for the Times Table 

By coincidence, it was Dana Williams' father, Noah Williams III [6], on whose 4th grade 
blackboard at Highland Hall I discovered the following intriguing version of a times table which he 
had learned from one of his teachers, William Harrer, at the New York Rudolf Steiner School [10]. 

Called ''The Great 
Times Table," it 
showed all the 
products from 
lxl = 1 up to 
12x12 = 144, in­
dividual "rows" 
or "columns" of 
the usual square 
fonnatted table 
(such as 1 2 3 "', 
246· .. , and so 
on) following pe­
culiar curves, with 
most products 
appearing at pla­
ces where cur-
ves intersected 
(for example 12 
at mid-level on 
right is where 
the vertical 2 
times "column" 
curve 246 8 .. · 

meets the horizontal 6 
times "row" curve 6 
12 18···, so 12 is their 
product 2x6). Per­
fect squares 1, 4, 9, 
... up to 144, on the 
other hand, appear in 
mid-segments mark­
ed by square frames, 
and are all grouped 
around the central 
cavity. 

After some re­
flection, I realized 
that it was simply a 
45°-45°-90° semi­
square which had 
been bent around at-

. tractively if arbitrari­
ly into a leaf or heart 
shape, the other half 
square having been 
deleted as redundant 
due to commutivity. 

Imagine my surprise when these two apparently unrelated questions from two generations of 
the same family - the shape of a water fountain from Williams fils and the shape of a times table 
from Williams pere - turned out to be related! A letter from another High Mowing alumnus, 
Christopher Stoney ([7], p. 7), showed how the right-hand half of the fountain could be labelled as 
a times table, its rows and columns now parabolic jets, general products appearing at their (profile) 
intersections, and perrect squares at their points of tangency to the over-all parabolic envelope. 
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The insert ([7], p. 8) shows how a section of the fountain corresponds to the usual semi-square. 
Notice that 0 appears in two places: Once at origin as common multiple of all other numbers 
(common source of all jets), and again at top-most point of envelope representing perfect square (}2. 

~ ... _-. 
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It is conventional to place 1 as identity element at the top comer of a multiplication table and 
omit 0, since while O·n = 0 is true for all n its very truth makes solving O·x = 0 for x impossible. 
The presence (let alone double presence) of·O in the water fountain table therefore disturbed Mr. 
Stoney, and he began coming up with finite modular multiplication tables (in "clock arithmetic") 
with either lots of 0' s such as this star-shaped version of Mull Mod 10 which appeared in [7], p. 8: 
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or this star-shaped version of table for usual zeroless Mull Mod 7 wl1ieh appeared in [8], p. 18: 

1 2 3 h 5 6 

2 h 6 1 3 5 

362 5 1 h 

b 1 5 263 

5 316 b 2 

: 6 5 h J 2 1 
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or, again with O's, ' 
this version of Mult 
Mod 9 ([7], p. 9) 
which cleverly uses 
the falling-circles 
version of the water 

Oth "row" or "column'') 
·on the top-most circle 
(printed double~thick 
for emphasis) to be 
read as a giant "0." 

fountain display to [A word on the mea-
model its cyclically·surements used in 
repeating "rows" falling-circles model 
and "columns" on 4th p.: Taking g = 
o 1 2 3 45 67 8, 32 ft.lsec.2, it is con-
o 2 4 6 8 1 3 5 7, venient to take h = 16 
o 3 6 0 3 6 0 3 6, ft. so that Vo = -v'(2gh) 
etc., with all of :;:: 32 ft.lsec. The cir-
the O's lying (as cles lie a ! sec. apart] 

Just when it seemed about everything possible had been done and this water/table discussion 
had run its course, a letter [9] arrived from Timothy Poston (then at Battelle Institute, Geneva) 
noting that each of these stars such as ''the multiplication table mod 10 belongs on the Mijbius strip. 

~····-··V"""'V 
~'<\~.0>··y 
-5", ~-~rr-s-o.'-\7 /5 : <:,,;; ~'J " 

k +- " \ '!J, ~ d . /'" .,.\/~: :' "i,"": o t~o 0 

This is visible from Stoney's diagram [repeated above left], which is implicitly drawn on the pro­
jective plane. I find it more natural to remove the hole in the middle (with no ntunbers on it) than 
the circle at infinity (with five): the [dotted] line on my table shows where Stoney's points at in­
finity go. The notation has exactly one line per number and a product [only] at each intersection." 
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