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Abstract 

Following the discovery of a series of geometric designs on the floor of the Biblioteca Laurenziana 
in Florence we analyse the "Medici panel", which consists of a circular rosette containing a set of 
inscribed elliptical disks, with a view to regenerating the pattern. The geometry is shown to be 
surprisingly complex. We were able to determine a numerical solution for synthesising the pattern. 
Alternatively we found analytic solutions for simpler patterns such as inscribed circles or polygonal 
rosettes. 

1 Introd uction 

In 1774 a dramatic event occurred in the reading room (see Figure 1) of the Biblioteca Laurenziana 
in Florence, when a desk overloaded with books collapsed. During the repairs it was discovered that 
underneath the wooden floorboards supporting the reading desks lay a pavement containing a series of 
terracotta panels, each with a different geometric design (see Figure 3), 

To explain the mystery of why these carefully designed and executed works had been hidden we need 
to look into the history of the building's construction. The library was designed by Michelangelo for the 
Medici Pope Clemente VII to store the Medici's collection of books and manuscripts. Although work 
was started in 1524 there were many delays and alterations, and when it finally opened (37 years after 
Michelangelo leaving Florence and 7 years after his death) in 1571, it was still unfinished! It appears 
that Michelangelo's original plan for a central aisle of desks was vetoed by the Pope since more seating 
and storage were required. This necessitated the modified version finally executed which has two side 
aisles of desks, unfortunately covering the geometric panels. The inlaid pattern in the central aisle was 
then designed and constructed shortly afterwards (1549-1554) by Santi Buglioli and Tribolo, following 
the carved ceiling by Battista del Tasso and Antonio Carota (1534) which was based in turn on designs 
by Michelangelo. Unfortunately, while some features of the library such as these are well documented, 
little is known about the hidden floor panels.1 Moreover, due to their remaining covered up to this day, 
their mere existence is still not well known. Even standard works give no information [1, 12] or just 
include a fleeting mention [5]. However, since the 1980s Ben Nicholson has been investigating many 
aspects (including philosophical, psychological, and aesthetical themes as well as the geometric) of the 
panels [8,9]. 

This paper will look more closely at the geometry behind the "Medici panel" which is illustrated in 
Figure 2. This shows a circular rosette, similar in form to the type much favoured in architecture since 
Roman times [11]. Many detailed and subtle aspects of its construction have been carefully analysed 
by Nicholson [8, 9] (see also Kappraff [7]). For instance, it is not perfectly square, but actually has 
an aspect ratio of 12:13. Nicholson shows that this is an important aspect of the shape as the lengths 
of the diagonals of both the inscribed square and rectangle are used to layout geometric figures as 
part of the construction process. In addition, the difference between the diagonals provides a means 
for determining the spacing between the curvilinear rhombuses. We will call these rhombuses in the 
patterns "slots". The particular feature we are interested in is the unusual occurrence of the inset ovals 
within the slots. While Nicholson described many aspects of the rosette's construction, he stops short 
at these ovals. In this paper we will attempt to see why. 

1 It should be mentioned that, perhaps unsurprisingly in light of this sparsity of information, there is not total agreement 
that Michelangelo was involved in the design of the panels (J. Ackermann - personal communication). 
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Figure 1: The reading room of the Biblioteca 
Laurenziana 

Figure 2: The "Medici panel" - a circular 
rosette. 

Figure 3: This montage (from Nicholson [8]) shows the library with the geometric panels revealed. 

2 Finding the ellipse 

The Biblioteca Laurenziana uses a pair of rosettes slightly rotated against each other to produce the 
bands which therefore expand as they radiate out from the centre. To simplify the problem we shall only 
treat the rosette's bands as infinitely thin circles. We will also assume that the ellipses are tangent to 
these circles rather than yet another set ofimplicit circles offset slightly from the bands (see Figure 4). 
2.1 Problem statement 

The circular rosette we are considering is made up of a set of n circles of equal radius, which are 
distributed about the centre of the rosette at even angular increments of 2:. radians, and all pass 
though the rosette's centre.2 Here we outline our approach to finding the parameters of the family of 
ellipses (see Figure 5) which form a tile, fitting in between the main circles generating the pattern. 

2In practice, artists often make use of additional reference circles: the outer envelope and an inner "centrum" ring; see 
for instance Diirer's description [4] . 

. , 

Figure 4: A circular rosette containing n = 6 cir­
cles. An ellipse (f) is shown tangent to two adja­
cent circles (g and h). Also indicated are the two 
contact points (xg,Yg) and (Xh,Yh). 
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Figure 5: Three possible ellipses from the family 
that can be inscribed in the same slot. 



n type (Jg (Jh 
even a (4j - 4)71"/(2n) 4j7r/(2n) 
even b (4j - 2)7r/(2n) (4j + 2)7r/(2n) 
odd a (4j - 5)7r/(2n) (4j -1)7r/(2n) 
odd b (4j - 3)7r/{2n) (4j + 1)7r/{2n) 

Figure 6: Notation for slots in the rosette Table 1: Positions of defining circles 

Let us consider a single ellipse from the family of ellipses which it is possible to put into a single slot 
in the pattern. To keep the mathematics simple, but without loss of generality, we assume the defining 
circles have a radius of 1 unit, and that the centre of the ellipse to be found lies on the Y axis. The 
ellipse can thus be written as 

x2 {y _ YO)2 
!(x,Yja,b,yo) = a2 + b2 -1 = 0. 

The centre of the ellipse is at a height 'Yo and its horizontal and vertical axis lengths are 2a and 2b. 
Because a single parameter family of ellipses fits in the pattern in a given slot, if we choose say Yo, this 
determines a and b. For simplicity in the derivation, we replace a2 by A, b2 by B, and then replace B 
by SA where S measures the vertical elongation of the ellipse is. The defining circles (see Figure 4) are 
at 

where 

g{x, y) = {x - Xg)2 + (y - yg)2 - 1 = ° 
h{x,y) = {x - Xh)2 + (y - Yh)2 -1 = 0, 

Xg = cos{(Jg), 

Xh = COS{(Jh), 

Yg = sin((Jg) 

Yh = Sin{(Jh). 

We let nbe the number of defining circles, while j denotes the ellipse's slot in the pattern, as shown 
by the numbering in Figure 6. The values for (Jg and (Jh depend on whether n is even or odd, and also 
on whether we want "type (a)" or "type (b)" ellipses-see Figure 6. Thus, we must consider 4 cases as 
shown in Table 1. 

Rosettes with fewer than five circles do not generate suitable curvilinear rhombus-shaped slots. We 
also discard the case of n = 5 since, as illustrated in Figure 7, the rhombuses are asymmetric, unlike 
rosettes with six or more circles. That is, the two innermost sides are shorter than the other two, 
whereas for n ;::: 6 all four sides are of equal length. Thus we can specify the number of rings of slots 
as l ¥ J - 2 .. For each odd and even case we can also distinguish two types of configurations in which 
the solutions alternate between being aligned with the Y axis or rotated by *. This alternation also 
coincides with whether the outermost ring contains a four-sided slot or a three-sided one, and depends 
on nmod4. 

(a) (b) (c) (d) (e) 

Figure 7: Rosettes with 5 to 9 circles 
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In the rest of this section we only examine the n even, "case (a)" solution. The other cases can be 
solved in a similar fashion. To find the ellipse in a given slot, the conditions to be satisfied are (see 
Figure 4) that the ellipse f = 0 meets the circle 9 = 0 tangentially at point (xg, Yg) and that the ellipse 
f = 0 meets the circle h = 0 tangentially at point (Xh, Yh). 

We may approach the formulation and solution of these conditions in two ways. 

2.2 First approach 

In the first approach we consider the normals 'V f, 'V g, and 'V h to each curve. These are orthogonal to 
the curve tangents, but are not necessarily unit normals, and are merely proportional at the appropriate 
contact points. Thus, letting subscripts of x and Y denote derivatives, we require that at (xg,Yg): 

f(xg,Yg) = 0, g(xg,Yg) = 0, fx(xg,Yg)gy(xg,Yg) = fy(xg,Yg)gx(xg,Yg), 

while at (Xh,Yh): 

(1) 

We now proceed by eliminating Xg and Yg from the set of Eqns. 1, and Xh and Yh from the set of 
Eqns. 2. Either resultant [2] or Grabner basis· [3] algorithms may be used to perform the elimination. 
The former have the advantage of generally running more quickly, while the latter generally produce 
less extraneous factors in the solution. In either case, we factorize the solutions obtained and throw 
away roots which do not correspond to roots of the original problem. The results of the previous step 
are a pair of equations in A, S and Yo. These are of degree 16 in Yo, 20 in S, and 8 in A, and take up 
too much space to present here. Finally, we can then in principle eliminate one further variable between 
these remaining equations, most usefully A, to get a relationship between S and Yo. 

2.3 Second approach 

The first approach proved intractable even when using Mathematica. As an alternative we now rely 
on the idea that two curves which have tangential contact have second order contact. Suppose a curve 
Y = F(x) is tangent to the x-axis. At this point, it satisfies Y = 0, and also dyjdx = 0, as it meets, and 
is tangential to, the axis. Analogously, in our problem, we may express the condition that f(x,y) = 0 
meets g(x,y) = 0 with a second order contact at (xg,Yg) by the following procedure. Firstly 

eliminate Y from f(x, y) = 0 and g(x, y) = 0 

to give 
S(X) = o. 

Then we require both 
S(Xg) = 0 and sx(Xg) =0. 

From the last two equations we eliminate the variable, Xg, to produce an equation in A, S and Yo. 
Of course, we could just as well eliminate x first rather than Y, and take the Y derivative instead in 

the above procedure. Degenerate cases arise for horizontal or vertical contacts between f = 0 and 9 = 0, 
but these do not occur in the problem of interest. The result of carrying out this procedure produces an 
equation of degree 8 in Yo, degree 4 in S and degree 4 in A (which is omitted here for reasons of space). 
The equivalent problem is also solved for (Xh, Yh) giving a second equation in A, S and Yo. 

Finally, in principle, we can now eliminate one of these remaining variables to again give a single 
relationship between, say, S and Yo. 

3 Practical results 
In practice, computer algebra systems are not powerful enough, nor is this paper long enough, to 

give a general solution! To be able to reach a single equation using either approach we must specialise 
the problem: we either have to put in numerical values for n and j if we are interested in ellipses of 
arbitrary shape, or we have to choose a special value for S if we want a solution for any nand j. We 
show the results of both specialisations below. 
3.1 Fixing nand j 

If we fix n = 6 and j = 1, as a simple case, the second approach of Section 2 above gives the following. 
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Eliminating Xg and Yg where f = 0 and 9 = 0 meet, and similarly, eliminating Xh and Yh where f = 0 
and h = 0 meet gives two equations from which A can be eliminated to produce an explicit polynomial 
equation of degree 22 in Yo and 17 in 8 which nevertheless is still too long to give here. However, if 8 
(or yo) is chosen, this equation can be solved numerically to find the desired ellipse. 

A similar approach also works for other particular numerical values of n and j, although the trigono­
metric functions of n and j may be more complicated, resulting in lengthier equations. 

In practice, for large values of 8 (greater than about 5, say) the solution is rather ill-conditioned. 
Unless care is taken the trivial solution Yo = S = A = 0 is found. In addition, the undesirable solution 
a = r needs to be avoided. 

3.2 Fixing S = 1 

If we try putting in various special values of 8, for example 2, or !, we find that this does not usefully 
simply matters most of the time. However, the particular case 8 = 1, i.e. where the ellipses in each 
slot become circles, does lead to a significant simplification. Early in the process, many extra factors 
produced during elimination, and leading to unwanted solutions, can be removed. The contacts of f = 0 
with 9 = 0 and with h = 0 lead respectively to the two equations 

(4 - A) A + 2 (A -1) Y02 - Y04 + 2Yo2 cos(28g ) + 4yo (Y02 - A) sin(8g ) = 0, 

(4 - A) A + 2 (A - 1)Yo2 - Y04 + 2Yo2 cos(28h) + 4yo (Y02 - A) sin(8h) = 0 

From these, it turns out that the equation for Yo, the position of the centre of the circle, is linear so 
can easily be determined. 

We can also derive a linear expression for A, and hence a single solution for a, the radius of the 
circle. We can thus express circular solutions to our problem for any n and j 

a (= b) = 2 (cos(28g ) - cos(28h)) 
6 + cos{28g ) + cos(8h)2 + 4 sin(8g ) Sin(8h) - sin(8h)2 

and 
_ 8 (sin(8g ) + sin(8h)) 

Yo - 6 + cos(2 8g ) + cos(2 8h) + 4 sin(8g ) sin(8h) 

To solve for a particular case, the values for 8g and 8h from Table 1 should be inserted after choosing 
j and n. This has been done for all values of j for n = 12 to produce the pattern shown in Figure 8. 

3.3 Maximising the area 

As a third experiment we also tried specialising the ellipse in each slot to be the one of maximum area. 
Starting with the second approach of Section 2, we may perform the final elimination in two alternative 
ways eliminating either 8 or A. We arrive at a pair of equations which we will write as 

E(Yo, 8) = 0 and F(yo, A) = 0 

for the family of ellipses. The area of an ellipse is given by Q = 7rab = 7rA..[8. This is maximised when 
dQ / dA = OJ note that 8 depends on A. Thus, the area is maximised when 

or 

However 

( 1 d8) 
7r .;s + 2..[8 dA = 0, 

d8 
28+ dA =0 

dE 8E dyo 8E d8 d dF _ 8F dyo {JF 
dA = 8yo dA + 88 dA an dA - 8yo dA + 8A' 

From these we may obtain 
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Figure 8: Circles inscribed in 
the rosette 

Figure 9: The Piazza del 
Campidoglio, Rome 

and hence the ellipse area is maximised by solving 

in addition to E = 0 and F = o. 

2S 8F 8E + 8E 8F = 0 
8yo 8S 8yo 8A 

d 

c 

. Figure 10: Maximum area el­
lipse inscribed in a rhombus 

Even in the particular case n = 6 and j = 1, this new third equation proved to be of extremely high 
degree, namely degree 45 in Yo, and degree 17 in both S and A. We return to maximum area ellipses in 
the following sections. 

4 Polygonal circular rosettes 

Another possible simplification is to approximate the circular arcs making up the sides of each slot 
by straight lines joining the original vertex positions. In fact, such a polygonal rosette was designed 
by Michelangelo for the Piazza del Campidoglio at the top of Capitoline Hill (see Figure 9).3 Since 
each rhombus is symmetrical about both axes (unlike the previous case with circular arcs) we need just 
consider one of its edges to find the maximum area inscribed ellipse. Taking the first quadrant, as shown 
in Figure 10, suppose the equation of the bold edge is 

d 
y = --(x - c). 

c 

Combining the constraints that the· ellipse and line have equal tangents and touch, and eliminating x 
and y we obtain 

c2 (~ _ ~) = a~d 
The maximum area ellipse is found when 

and so the condition is 

which yields 

dQ = 7r (a db + b da) = 0, 

d 
b = ..;2' 

c 
a = ..;2. 

It is also straightforward to show that the. ellipse makes contact with the midpoint of the line. 
Consequently, the ellipses on either side of the lines are also tangent to each other, as shown in Figure 11. 

3There were even longer delays involved in this project, and the pavement was not laid until 1940! 
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Figure 11: Maximum area el­
lipses inscribed in the polyg­
onal approximation of the 
rosette 

Figure 12: The maximum area 
inscribed ellipses for both a cir· 
cular and polygonal rosette. 

Figure 13: Maximum area el­
lipses inscribed in the circular 
rosette 

5 Comparing slots in circular and polygonal rosettes 
Here we compare the curvilinear rhombus formed by the circular and the regular straight-sided one 

from the polygonal rosette. In several ways both rhombuses are similar. They have the same area, and 
in both cases are formed by four equal length lines or arcs. Does the change in shape affect the size and 
shape of the inscribed ellipse? 

For the simple case of an inscribed circle at n = 6 and j = 1 we can easily analytically determine 
the radius for the curvilinear case (rc = ts) and for the polygonal rosette (rp = ~). Their ratio is 
!Go :::::: 1.06588, and so the curvilinear slots admits a 7% larger circle. 
rp 

For the more general case we find (numerically) that the maximum area inscribed ellipses in the 
circular rosette are still larger than the polygonal rosette, but only by smaller amounts (e.g. about 4% 
for n = 6 as shown in figure 12, and 1% for n = 12). Asn increases the differences between the inscribed 
ellipses in the circular and polygonal rosettes decrease. 

6 A conjecture 

The circular rosette with maximum area inscribed ellipses (determined numerically from the equa­
tions in Section 3.3) is shown in Figure 13 for n = 12. Notice that the ellipses appear to be in contact 
with their neighbours, although we have been unable to prove this to be the case. We conjecture that 
the ellipses are indeed in contact, and challenge readers to prove or disprove this. 

7 Postscript 
The rosette was not the only application of the ellipse within the library'S design. It also appears 

in the ceiling and central floor designs shown in Figure 14a&b. A more prominent example is in the 
staircase in the entrance hall, shown in Figure 14c, and built in Michelangelo's absence by Ammannati 
in 1559, following a clay model. It consists of three flights of steps; the outer ones are quadrilaterals, the 
central ones are bounded by convex elliptical arcs, and the bottom three steps are complete ellipses. This 
unusual design is highly thought of, and has been variously described as "an explosion of originality" , 
"a wavelike crescendo", "spilling from the library door" , etc. 

In fact, although the Classical world preferred the circle, from the Baroque period onwards the 
dynamism of the ellipse has been highly rated. For instance, the Victorian architect and designer Owen 
Jones [6] stated that: "In the best periods of art, all mouldings and ornaments were founded on curves 
of the higher order, such as the conic section; whilst, when art declined, circles and compasswork were 
much more dominant." Similarly, at around the same time the designer George Phillips [10] wrote that 
"Lines of varied or curvilinear character are essentially those of beauty." And compared to circles, "An 
oval ... has a much greater degree of lightness" . 

In this light the Medici panel with its rotated circles and radiating ellipses can be seen as a harmonious 
combination of the Classical and Mannerist sensibilities. Moreover, in addition to its aesthetic charms 
we have found that this hidden panel has hidden geometric complexities and attractions. 
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(a) (b) (c) 

Figure 14: The patterns from (a) the ceiling and (b) the central floor aisle. (c) Michelangelo's stairway 
leading to the reading room. 
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