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Space-filling curves provide a graceful example of how mathematical objects can appeal to 
one's artistic sense. Similarly, Chladni visualization of a vibrating membrane renders artistically 
interesting plane curves, or nodal sets, of extreme mathematical value. We explore the nodal 
lines of particular eigenfunctions of the Dirichlet problem for the Laplace equation in a square 
domain, and we present a non-recursive family of simple curves which fills the space at the limit. 
This family of quasi-space filling curves provides a visually interesting application of the nodal 
set problem, which we also consider in the context of musical vibrations. 

1. Introduction 

Space-filling curves can be artistically fascinating, for example in computer art, as well as useful in 
practical applications, such as for grid generations. Another class of plane curves of both artistic 
and mathematical interest can be created by means of experiments, where the vibrations of a 
membrane are visualized using sand, which positions itself along the parts of the membrane at rest. 
Amazingly enough, these patterns correspond to the zero level sets, also known as nodal lines, of 
the eigenfunctions of a Dirichlet problem for the Laplace operator. 

Images of these nodal lines are readily available in literature, and can be thought of as visual­
izations of sound. We are interested in exploring the relationship between space-filling curves and 
nodal curves. A space-filling nodal curve can be considered to represent the absence of vibration. In 
particular, we consider the question "Is there a space-filling nodal line?" or the more catching but 
not rigorous questions What does the absence of sound look like? What is the image of a vibration 
that does not vibrate? 

Examples of space filling curves are often constructed as fractals, and can be applied in array­
based algorithms and data structures. Many of these examples, are constructed as a limit of a 
family of curves. Following this idea, we generate a family of curves, which we call quasi-space . 
filling as they form a sequence of curves which will fill the space at the limit, although we do not 
claim they will converge to a space-filling curve. 

2. Nodal Sets in Music 

Sound can be thought of as a combination of sine waves or pure tones. The more complex tones 
created by objects vibrating at different frequencies are combinations ofthese pure tones, expressed 
mathematically as the eigenfunctions of differential equations, as we shall explore in the next 
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Figure 1: OJ = 2J~l,O:j = 2j ,j = 4 

section. Studying the vibrations of specific shapes leads to predictions of the sounds created, 
giving a mathematical way of visualizing the shapes of sound. 

The theory of vibrating strings has been well studied, with early mentions by Galileo and 
Mersenne (among others) of the musical interpretations of wave frequencies of vibrations. The 
ancient Greeks knew that the sounds emitted by a vibrating string are dependent upon the nodes 
or positions at rest. In the 18th century Bernoulli and Euler did considerable work on vibration 
and elasticity problems, at times in rivalry with d' Alembert, who also studied the wave equation 
associated to vibrating strings. Bernoulli was able to determine that the musical notes of a stringed 
instrument are the composition of an infinite number of simple vibrations. 

Chladni figures were the first extensive experimentation into the vibrations of two dimensional 
systems. Mathematical theory of vibrations of surfaces had been studied before Chladni, for ex­
ample in Euler and Bernoulli's work on elasticity. In addition Chladni's experiments recall those 
mentioned by Galileo in Two New Sciences, regarding patterns made on a brass plate corresponding 
to the tones emitted. 

However German physicist Ernst Chladni's experiments in 1787 on the patterns formed by vi­
brations were the most comprehensive. These figures drew considerable interest during Chladni's 
live demonstrations, and impressed Napoleon, who offered a prize for the investigation of a math­
ematical theory to explain the experimental results. This prize was won by French mathematician 
Sophie Germain in 1816. 

In his experiments, Chladni covered thin metal plates with sand and caused them to vibrate 
by bowing, which sends the sand to the portions of the plate that are at rest. The resulting 
patterns represent the nodes of vibration, or nodal lines of the plate. Many of the Chladni patterns 
give visually pleasing designs which correspond to the zero level sets of eigenfunctions of associated 
eigenvalue problems (see for example [6]). From the designs, one can picture the shape of the sounds 
emitted by vibrations of varying frequencies. The symmetry patterns, determined by the shape 
of the plate and the periodicity of the eigenfunctions, can be quite striking. Chladni experiments 
have been used to determine ideal shapes for musical instruments, including drums and violins. 
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In the following sections, we look at eigenfunctions for a square membrane with fixed bound­
ary. The eigenvalue problem presented arises when considering a vibrating homogeneous square 
membrane, and can be thought as an ideal model for studying the vibration of a square drum. 

3 . Nodal Sets of Eigenfunctions 
We consider the case of a vibrating membrane in the form of the square [0,7l"] X [O,7l"]. We can 
argue mathematically that in order to find a family of curves that will fill the domain at the limit, 
we need to look for eigenfunctions corresponding to a sequence of eigenvalues tending to infinity 
and having simple curves as nodal lines. (We refer to the Appendix below for all the mathematical 
details, notation and choices used in this section.) 

We use the computer algebra systems Scilab and Maple to explore the zero level sets of eigen­
functions. Following [2, page 455], we choose the sequence of eigenvalues Aj = 1 + a; with aj = 2j 

and as corresponding eigenfunctions Uj(x, y) = sinx sin(aj y) + (1- OJ) sin(aj x) siny, with OJ -+ O. 
In this case, it is easy to see that the eigenfunctions will have a single nodal curve (see Figures 7 
and 8 in [2] page 456). 

We experimented with several different expressions for the sequence OJ, and we found that to 
obtain simple curves we need a relationship between the decay to 0 of OJ and the rate at which 2j 

tends to infinity (as we argue theoretically at end of the Appendix). In particular, if OJ tends to 0 
not rapidly enough the nodal lines are not simple curves even for very small values of j (obviously, 
one might expect a high rate of failure for. j large since the singularities f3It could conceivably 
accumulate around 1). On the other hand, we have to balance our need of a rapid decay with 
the search for interesting and "visible" simple curves. Our experimentations lead us to choose 
sequences inversely proportional to aj. 

Figure 1 presents the simple curve corresponding to the choice OJ = 2J~i' for j = 4, where the 
shading enhances the two sets U4(X, y) > 0, U4(X, y) < 0, and emphasizes that these are simply 
connected domains. 
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In Figures 2, 3, and 4 we show the first few members of the family of simple curves that we 
created by picking OJ = 2~' The pictures give a good idea of the behavior of the curve (that is 
of the "silent" part of the membrane) as j increases. A 180 degrees rotational symmetry is also 
evident in our curves. 
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The theory also helps us to quantify the rate at which our curves fill the square. In fact, from 
[5] we know that the length of a nodal line is proportional to At, so in our case the length of our 

i. curves tends to 00 at the rate of 22 . 

A The Mathematics of the Family 
We consider the following two-parameter family of functions 

Uj(x,y) = sin X sin(ajY)+€j sin(ajx) siny for (x,y) E [O,7r] x [0,71"] 

which are solutions to the Dirichlet eigenvalue problems for the Laplace equation in two dimensions: 

{ 
Uxx + Uyy = -AjU, 

u=O, 

in [0,71"] X [0,7r] 
on {O, I} x [0,71"], and [0,71"] X {O, I} 

with Aj = 1 + a;. It is well-known [2, pages 300-302] that if aj is an integer then Uj(x,y) is an 
eigenfunction for a square membrane. The level set Uj(x, y) = ° locates the points at rest on the 
membrane when it is vibrating with frequency Aj. 

Quite a bit is know regarding the eigenvalues and eigenfunctions for the Dirichlet eigenvalue 
problem which we can use as guidelines for our construction. In particular, if the nodal line 
Uj(x,y) = 0 is a simple curve it will divide our square into two simply connected domains, say 
O}, 0;. We then have that the restriction of Uj to O} (respectively to 0;) is an eigenfunction for O} 
(0;) which does not change sign. Using the fact that only the first eigenfunction does not change 
sign ([2, page 451]), we can conclude that Aj is the first eigenvalue for the Dirichlet eigenvalue 
problem in O} (respectively in 0;). But, the first eigenvalue for a simply connected domain is 
comparable to the radius of the largest ball inscribed inside the domain [3, Theorem 1.5.10 page 32]; 
since (again from [2, page 451]) we know that the largest ball inscribed in O} (respectively, 0;) 
has radius r ::; ~ (here kO,l is the first zero of the zero-th Bessel function), if Aj -t 00 we have a 

J 
sequence of curves that fill the space at the limit. 

The Implicit Function Theorem tells us that if V'Uj(x, y) =1= ° in (0,7r) X (0,7r) then the nodal 
line Uj = ° describes a simple curve. Therefore, our search translates to finding aj, €j such that 
the three following conditions are NOT satisfied simultaneously: 
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Figure 4: OJ = ~, aj = 2j , j = 5 

cosxsin(aj y) + f.jaj sinycos(aj x) = ° 
aj sinxcos(aj y) + f.j cos y sin(aj x) = ° 

sinx sin(aj y) + f.jsin(aj x) siny = 0. 

One can easily check the following claims: 

3 

(1) 
(2) 

(3) 

Claim 1 If (x, y) E (0,11") X (0,11") and Uj(x, y) == 0, then sin(aj x) = ° if and only if sin(aj y) = 0; 

Claim 2 If (x,y) E (0,11") x (0,11") and Uj(x,y) = 0, then \lUj =1= ° ifsin(ajx} = O,sin(ajY) = ° 
(note: in this case one has l\lujl2 = f.JaJ sin2 y + asin2 x =1= 0); 

Claim 3 If (x, y) E (0,11") X (0,11") and Uj(x, y} = 0, then \lUj =1= ° if one of the following conditions 
holds: cos(ajY) == O,cosy =1= ° or cos(ajY) =1= O,cosy = ° or cos(ajx) = O,cosx =1= ° or cos(ajx) =1= 

O,cosx = 0; 

Claim 4 If (x, y) E (0,11") X (0,11") and Uj(x, y) = 0, then aj an even integer and \lUj = ° imply 
that cos(ajY) = cosy = 0, (or cos(ajx) = O,COSX = 0) cannot hold; 

Claim 5 If (x, y) E (0,11") X (0,11") and f.J =1= 1, then Uj(x, y) = 0, \lUj = 0, and cos(ajY) = cosy = 

cos(ajx) = cos X = ° cannot hold. --
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As a consequence of the above claims, we have that as long as EJ f= 1 and CY-j is an even integer, 
we can just consider the case where the sine and cosine functions at x, ajx and at y, ajY are all 
non-zero. We then combine equations (1) and (2) with equation (3) to obtain the equivalent set of 
conditions: 

aj tanx = tan(aj x) 

aj tan y = tan(aj y) 

sinx sin(aj y) + Ej sin(aj x) siny = O. 

(4) 

(5) 

(6) 

Clearly, since tangent is an increasing function where defined, if aj is an even integer, aj tan t = 
tan(aj t) can hold at most at aj points (let's say z~j for i = 1, ... , aj), so there are at the most aJ 

Q' Q' 

j sinzi J sin(ajzkJ) . .. 
values (say -Ilk == . ( Q.). Q' for 2, k = 1, ... ,aj), for whIch equatIOns (4), (5) and (6) all 

~ sm aJ· z· J SIn Z . J 
~ J 

hold true, so as long as we choose Ej f= f3fk our level curves will be simple closed curves. Moreover, 
if we restrict ourself to the case Ej > 0 there are even fewer possible "unfavorable" choices. 

We finally remark that if we consider any of the z~j E (0,7f), by the proprieties of the tangent 
function, and due to the fact that aj is an even integer, one of the remaining z~j, for some 1, must 
be equal to 7f-z~j (since aj an even integer implies aj tan(7f-z~j) = tan(aj(7f-z~j))). Therefore, 
we have f3fl = 1, which tells us that if we keep Ej close to 1 (for example by taking Ej = 1- 8j with 
8j decaying to 0 "fast enough") we will avoid the "unfavorable" choices. 

The picture to the right in Figure 5 shows the simple curve given by the nodal set for the choice 
Ej = 1 - ~ ,aj = 2j , j = 4; in the one to the left we shade the domains Uj > 0, Uj < ° differently, 
to highlight that they are in fact simply connected. 
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Figure 5: Ej = 1 - ~ , aj = 2j , j = 4 
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