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Developments in music theory, musical acoustics, and psychoacoustics over the last 15 to 20 years have 
resulted in a single structural basis that provides common ground for analysis of musical systems that 
include non-standardlnon-octavesystems, microtonal systems, and systems that use unusual tunings 
common in non-western music. These developments make it likely that a confluence of understanding in 
musical acoustics, psychoacoustics, and music synthesis is about to take place. This common structural 
basis will lead to generalized rules of composition, unheard of since the classic work Treatise On 
Harmony by Rameau (1722), based on generalizations of the well-known properties of our familiar 12-
tone scales. Indeed, some of these generalizations have already been articulated. As participants in 
various aspects of this work for the past 14 years [1-7], we are in a unique position to collect, assess, and 
distill the important contributions to this, truly, multidisciplinary field. It is our purpose, in this paper, to 
articulate a 21st century approach to music composition using the latest results from mathematical music 
theory and musical acoustics. In our presentation we will produce audio and visual examples applying 
these techniques. 

1. Introduction 

The last quarter of the 20th century has given rise to a number of remarkable discoveries in music theory 
and musical acoustics [1-14] that are compatible with recent discoveries in psychoacoustics [16]. In this 
paper, we summarize. some of these recent results and show how these results can be used to define rules 
of composition applicable to non-traditional scales and musical systems. For the sake of clarity, we have 
used our familiar 12-tone system in most of the examples cited in the text. It should be keep in mind, 
though, that the techniques discussed may be generalized for analysis of any non-octave/microtonal 
system, including non-western musical systems. 

In Sections 2 and 3, we discuss methods of generating musical scales that are based on the well-known 
and, frequently used, continued fraction approximation. Although not specifically discussed in the text, 
direct connection to continued fraction analysis is given in references [1-4]. Section 4 describes a 
procedure for generating scale sequences, and the embedded chords structures, that have the modulation 
properties of the familiar cycle of fifths. In Section 5 and 6, we describe perceptual analyses and a 
psychoacoustic measurement that allows for the evaluation of scales and chord structures to determine if 
they make ''musical/perceptual sense." 

Section 7 describes a newly developed, dynamical-systems-like approach to the modem transformational 
theory [14] of music analysis. This approach leads to tonal hierarchies, tonal distributions, and chord 
progressions discovered in recent cognitive studies [16]. A briefSummary/Conclusion section follows in 
Section 8. 
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2. Best Equal-Tempered Approximations 

Based on work by Clough and Myerson [8], Carey and Clampitt [9], and a host of others, we have 
discovered criteria by which to choose a best equal-tempered musical scale of any number of notes 
(chromatic cardinality) and closure interval (traditionally the octave) that best approximates a set of target 
(usually,just) intervals. We have, thereby, generalized the process of choosing equal-tempered musical 
scales, typically chosen for ease of modulation and transposition and, therefore, compromising the 
consonance of just intervals, to include non-standardlnon-traditional scales. 

We [1-3] have defined a weighted, multiple-interval, 10-point desirability function (GDF - Generalized 
Desirability Function) thus: 

N 

Db (c,N) = 10 -20 LPil{clogb(Ri)+~}- ~I 
i==l 

Where {x} is the fractional part of x; N is the number of intervals to be approximated; c 
the chromatic cardinality of the equal-tempered system, and the base, b, of the logarithm 
represents the interval for closure. The R;'s are the frequency ratios of the individual 
intervals to be approximated and the P;'s are the respective normalized weights of each 
R; (i.e. V; = 1). 

Shown in Figure 1, is the GDF applied, simultaneously, to the intervals of the perfect fifth, major third, 
and minor third with weights of 0.25, 0.25, and 0.50, respectively for octave closure. 
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Figure 1. GDF for Pure Fifth (0.25), Major Third (0.25), and Minor Third (0.50) 

Note, with a weighting of 0.50 for the minor third, 12 equal-tempered notes to the octave is no longer the 
best choice. For relatively few notes to the octave, 19 equal-tempered notes is a better choice. 
Historically, 19-tone music has been explored by various musicians and composers. A similar calculation 
of the GDF for equal weighting (P's = 1/3) shows that the best relatively small chromatic cardinality is 12 
notes to the octave, our usual equal-tempered system. 

Using our GDF, a musician could choose a particular equal-tempered scale (and closure interval) 
depending on his or her compositional or musical requirements; the relative importance of selected 
intervals for mood, for example. With the increasing use of the computer as a musical instrument such a 
scheme is hardly out of the question. 
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3. Seales Made Up of Just Tones· 

Just recently [4], we have discovered an approach that generates scales which preserves the consonance of 
the just intervals and compromises the. modulation and transposition properties of equal-tempered scales. 
Suppose, for example, we choose to generate a 12-tone scale that preserves the just intervals of the perfect 
fifth, the major third, and the octave, Beginning with the home-tone (starting point) we allow tones 
generated by compounding the fIfth (or its inversion, the fourth) no more than twice, compounding the 
third (or sixth) no more than once, and require the resulting scale to repeat at the octave. This process 
generates 15 tones. We now select a 12-tone subset from these 15 candidate tones that most closely 
approximates a 12-tone equal-tempered scale. We have now inverted the usual process (of compromising 
the . just intervals by choosing an equal-tempered scale) by compromising the convenient 
modulation/transposition property of equal-temperament to preserve the consonance of the just intervals. 

Shown in Table 1, are the 15 candidate tones generated for the example cited above. 

Ratio Cents Angle Composition Ratio Cents Angle Composition 
1 0 0° 0 64/45 610 183° -2F-T 

16/15 112 34° -F-T 31l 702 211° F 
10/9 182 55° -2F+T 8/5 814 244° -T 
9/8 204 61° 2F 5/3 884 265° -F+T 
6/5 316 95° F-T 1619 996 299° -2F 
5/4 386 116° T 9/5 1018 305° 2F-T 
4/3 498 149° -F 15/8 1088 326° F+T 

45/32 590 i77° 2F+T 1 0 0° 0 

Table 1. 15 Candidate Tones Generated by Compounding the Fifth (twice) 
and the Third (once) 

In Table 1, the ratios are given as fractions with· the equivalent 
cents measurement [1200 1082(R)], along with the composition of 
intervals that generated that particular ratio. For example, the first 
ratio, 16115, was generated by compounding the fourth (the 
inversion of the fifth, hence -F) and the sixth (the inversion of the 
third, hence - T) each, one time, and reducing the resulting ratio to 
the octave. The third column gives the equivalent angle 
measurement around the. octave circle relative to 0° in the 12 
o'clock position. Shown in Figure 2, are the 15 candidate tones 
distributed around the circle. 

Figure 2. Candidate Tones for 
Pure Fifth and Major Third 

Shown in Table 2, is a 12 tone subset that most closely approximates an equal-tempered scale. 

Ratio Cents Angle Composition Ratio Cents Angle Composition 
1 0 0° 0 45/32 590 17r 2F+T 

16/15 112 34° -F-T 31l 702 211° F 
9/8 204 61° 2F 8/5 814 244° -T 
6/5 316 95° F-T 5/3 884 265° -F+T 
5/4 386 116° T 1619 996 299° -2F 
4/3 498 149° -F 15/8 1088 326° F+T 

Table2. Equal-Tempered 12-Tone Subset of the 15 Candidate Tones 
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Figure 3 shows the resulting 12-tone scale distributed around the octave circle. 

45132 

Historically, it may be plausible that when the Greeks moved 
beyond Pythagorean tuning, scales were chosen; first, to repeat 
at the octave; as the octave was the ''most perfect" interval. 
Second, that the next most important interval be the perfect fifth; 
in deference to Pythagorean tuning. Third, that the scale have 12 
notes; another hold over from Pythagorean tuning. And fourth, 
that the scale could be reasonably transposed over a reasonable 
number of keys to enable singing in different registers. How 
would one choose such a scale generated by more than one pure 
tone? Our process of generating candidate. notes based on 
multiple compounding of just intervals and choosing a subset 
that approximates equal-temperament fIlls-the-bill. In the 
example above, the resulting 12-tone scale is one example of the 
historically important Just Tuning System. 

Figure 3. Equal-Tempered 12-Tone 
Subset of the 15 Candidate Tones 

4. Modulation Properties and Chord Structure 

Once an n-tone scale is generated, by whatever 
means - for whatever reason (one such example 
is given above), to have any applicability to 
music, we need. to construct a chord structure 
that has the modulation properties of closely 
related keys, the cycle of fifths in our usual 12-
tone system. Figure 4 shows the cycle of fifths. 

We have articulated a generalized process for 
constructing major and minor triads with the 
appropriate modulation properties from a given 
scale, regardless of the closure interval and the 
number of notes in the scale. Therefore, we now 
have at our disposal a prescription for generating 
candidate scales with chord structures that have 
properties that are generalizations of the 
historically important cycle of fifths. Next, this 
process is applied to our familiar 12-tone 
system. 

MajorKey8 

c u 

Figure 4. Cycle of Fifths 

A Familiar Example: All seven note diatonic scales represented on the circle of fifths may be generated 
by the maximally even (ME) algorithm of Clough and Douthett [7]: 

Let c and d be the chromatic and diatonic cardinalities, respectively, and let n be any 
.fixed integer such that 0 .:S n.:S c - 1. Then, a ME set with these parameters is: 

I n - {lCk+nJ}d-1 
c,d - d k= 0 

Where Lx J is the smallest integer greater than or equal to x. 
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For our usual 12-tone system with a 7-note diatonic scale, c = 12 and d= 7. Ifwe let the notes C, C#fDt" 
D, D#1Et" etc. be represented by the numbers 0, 1,2,3, etc. this algorithm generates all the scales of the 
cycle of fIfths: 

Note that the, so-called, mode index, n, is equal to 5 for the C major scale. As the index increases 
incrementally (mod 12) the associated scales rotate clockwise around the cycle offtfths. 

Progression through a portion of the cycle of fifths is shown in Figure 5. 

We may construct the chord structure for our 
usual 12-tone system in the following way. The 
intervals of the fourth (inversion of the fifth) with 

c 

a frequency ratio of 4/3, the major third with a A' A' 

frequency ratio of 5/4, and the minor third with a 
frequency ratio of 6/5 are of equal importance. A D' ~ A D' 

The sequence of these ratios is 3:4:5:6 and the 
chromatic lengths of these intervals, in our 12-
tone system, are 5 half-steps, 4 half-ste~s, and 3 / 

p 

half-steps, respectively. [Note, 4/3 ::: 2 112, 5/4 ::: 
24112, and 6/5 ::: 23112.] By arranging the sequence c c 

of step intervals from largest to smallest (with 
B r:! 

rotations)we can generate all the embedded major A' A' 

triads in the scale. Arranging the step-interval 
A D' ~ A 

sequence from smallest to largest (with rotations) 
generates all the embedded minor triads. 

/ 
G 

For example, a rotation of the major triad 
F' F' 

sequence (4, 3, 5) generates a chord using the {O, c c 
4, 7} of the scale generated above. This is just the 

B B r:! 

C major triad. All of the embedded major/minor A' A' 

triads of the scale can be generated in this way. • fA D' • A D' 
Therefore, using the chromatic lengths of the 
frequency ratios, 3:4:5:6 in this case, which are . 0' 

best approximated by our usual 12-tone equal-
tempered system, we have determined the chord p F' 

structure of the system. 
Figure 5. Progression through the Cycle of Fifths 

5. Consonance and Dissonance 

Questions remain. Which of these candidate scales and chord structures is meaningful musiqally? How 
can we tell? And, are we relegated to waiting for the successes of hit-and-miss, trial-and-error basement 
computer composers and performers? Or, is there a direction defmed by the above results? 

We believe the latter, but much else has to be done. Because one has chosen a candidate scale, or set of 
scales, according to the numerics described above, there is no guarantee that the scale will be useful 
acoustically. In fact, the music theory analysis that leads to the candidate scales conspicuously avoids any 
mention of complex tones and the acoustic subtleties associated with combining notes that have complex 
spectra. It is just these subtleties that determine the acoustic richness of complex tones and chords. 
Fortunately, in the last 12 years a prescription for determining the consonance/dissonance of scales made 
up of complex tones has been articulated. 
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William Sethares [10], at the University of Wisconsin, has developed a measure of dissonance based on 
the "critical bandwidth" research ofPlomband Levelt [11]. One can construct complex spectra for tones 
that make up the candidate scales and apply Sethares' dissonance measure to the scale. and chord 
structure. This allows us to determine whether the candidate scale, including complex tones, has the 
requisite structure for possible use as a musical scale. If the complex candidate scale is low in 
consonance we havejustification for abandoning it and looking for scales that have a higher "consonance 
measure." 

For example, Figure 6 shows Sethares' dissonance measure, for a complex acoustical spectrum, made up 
of the fIrst 7 harmonics each with amplitudes 90010 of the previous harmonic. 

Dissa:n..ance 
1 

D.I 

D.~ 

D.4 

D.2 

A relative maximum on this curve 
represents a frequency ratio (interval) 
which is relatively dissonant. A sharp 
mmunum represents a consonant 
interval. Note, in the fIgure, that for this 
complex spectrum the octave (frequency 
ratio 211) and the perfect fIfth 
(frequency ratio 3/2) are consonant 
intervals. We, therefore, would consider 
using a scale generated by the perfect 
fIfth that closes at the octave - such as 

-'-'---.................... -------- Fuq. Rat:; ia our usual12-tone scale. 
~.2 ~.4 ~.i ~.. 2 2.2 

Figure 6. Dissonance Function of Sethares 

This still does not tell us whether the chord structure for the candidate scale makes sense mu~ically. 
Happily, we have recourse to research done in the last 20 years to assess the ''perceptibility'' of chords 
and determine whether these chords possess the richness of traditional harmonies. 

6. Musical Sense 

To evaluate the musical perceptibility, so-called intonation sensitivity measurements can be done. Onthe 
basis of this perceptual measure we may pick scales and determine the musical relevance of the candidate 
chord structure. The "intonation sensitivity" measure developed by Roberts and Mathews [12] may be 
applied to the chords of the candidate scales. . Operationally this means that audio fIles of candidate 
chords are synthesized.and subjects are asked which chords they prefer. The original work on intonation 
sensitivity showed a difference in response of musically trained and untrained individuals. It might be of 
benefIt to a modem composer/musician to know what scales and chords structures appeal to which group; 
i.e. whether one wants to "appeal-to-the-masses", be a ''musicians-musician'', or both. 

7. Chord Progression 

At this point, one could turn the candidate scales· over to a modem, microtonal composer to use as he or 
she sees fIt to develop the rules of composition. An alternative would be to articulate the "rules of 
composition" appropriate to the given .scale and chord structure. Recent results in music theory (Cohn 
[13], Clough et al. [6], Douthett and Steinbach [5], and Lewin [14]) are available to construct a ''musical 
space'2 and the network of transformations among chords ("rules of composition") appropriate for the 
scale. Composition would then take place in this musical space according to these rules of composition. 
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One approach to this, so-called, . ''transformational" theory has been articulated by one of us (JD). 
Techniques similar to those used in the study of dynamical systems have been adapted to study 
transformational theory. Although dynamical systems are probably best known today for the fractals they 
sometime generate, fractals are only a part of this field of study. As Strogatz [15] puts it in his text on 
nonlinear dynamics and chaos, "[dynamics] ... is the subject that deals with change, with systems that 
evolve in time. Whether the system in question settles down to equilibrium, keeps repeating in cycles, or 
does something more complicated, it is dynamics we use to analyze the behavior." In the dynamical 
systems approach to transformational theory periodic orbits represent cycles of scales and chords and 
form a basis for the ''rules of composition." . 

As the technical details of this approach are outside the scope of this article, we will appeal to a specific 
application of the theory, with the aid of the constructions shown in Figures 7 and S. To begin 
construction of a dynamical system, consider two concentric circles of different radii. The outside circle 
has 12 holes (numbered 0 through 11), equally spaced about its circumference. The inside circle, called 
the beacon, has 7 lamps, equally spaced about its circumference (numbered 0 through 6). Each lamp 
transmits a beam in the radial direction. Two rules apply when the beam hits the outside circle: 

1. If the beam hits a hole on the circumference of the outside circle, the beam travels 
through the hole. 

2. If the beam hits the inside wall of the circumference, the beam moves 
counterclockwise on the circumference of the outside circle and travels through the 
first hole it encounters. 

In this way, the outside circle acts as a 
type of filter, slightly modifying the 
paths of the beams. With the 
configuration in Figure 7a (7 beams, 
12 holes), the set of beam numbers 
(numbers corresponding to the holes 
that the beams pass through on the 
outside circle) is {O, 1,3,5,6, S, IO}, 
the Dt, Major scale. As the beam 
circle is slowly rotated clockwise, the 
beam numbers stay the same until the 
beacon has passed through an angle of 
4 and 217 degrees, or 117 x 1112 of a 
revolution. At this point, beam 4 hits 
hole 7, changing the set of beam 
numbers to {O, 1, 3, 5, 7, S, 10}, the 
~ Major scale (Figure 7b). 

• GIl""" 
(d) 

Db""" Ie) 

Figure 7. The 7 through 12 Diatonic System 

Continued rotation of the beam circle g~erates the scales of the cycle of fifths discussed above (see the 
remainder of Figure 7). This construction is an alternative approach to generating the cycle of fifths. 

Next, consider a beacon rotation that yields the C Major scale (Figure Sa); change the lamps to holes on 
the beacon, and add a new beacon with 3 lamps inside the old . beacon. This 3 through 7 through 12 
system has two filters, and the set of beam numbers on the outside circle is (0, 4, 7}, the C chord (Figure 
Sb). When the beacon is rotated clockwise, the next triad (chord) encountered is Am (Figure Sc). This is 
followed by F, d, B dim, G, and e; and the cycle begins anew. These are, of course, all the embedded 
triads in the C Major scale. Variations of this construction, interchanging beacon and hole circles, etc. 
lead to well-known chord progressions studied by music theorists [6, 7, 13]. 
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c 
(b) 

11(11) 

• (\I) 
c 

(e) 

Application of this dynamical systems 
generalization of ·transformational 
theory to our usual 12-tone system 
reproduces tonal hierarchies and tonal 
distributions, uncovered by the 
cognitive studies of Krumhansl [16], 
that are perceptually recognized as 
representative of "good phrasing" (i.e. 
a fundamental of good composition). 
It appears that. the recent discoveries 
of music theory and musical acoustics 
are compatible with recent discoveries 
in psychoacoustics. At this point one 
could (should?) perform cognitive 
studies on ''test'' musical pieces that 
use the rules of composition, 
articulated above, to determine if they 
are, indeed, perceived as "good 
compositions." Figure 8. Em~ded Triads in the C Major Scale 

8. Summary/Conclusion 

We have articulated an approach to musical composition that leads to "rules of composition" based on the 
latest results in music theory and musical acoustics that is compatible with· recent discoveries in 
psychoacoustics. The way is now clear. Generate a ''best'' n-tone candidate scale with a chosen interval 
for closure, embellish the notes with a complex spectra, test the scale for consonance/dissonance, 
construct the chord structure of the scale and test the intonation sensitivity' of chords, generate the musical 
space and rules of composition for the scale, and compose and test the compositions for their perceived 
"goodness." . 
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