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Abstract 

We derive formulas for counting the number of strands in a variety of knotwork designs inspired by 
traditional Celtic designs, including rectangular panels, circular borders, rectangular borders, and half frames. 
We include graphic examples for each of these types of designs. 

1. Introduction 

There is a long tradition of abstract geometric designs in the art of the Celtic peoples of ancient Britain, 
Scotland and Ireland, including spirals, key patterns and, in the Christian era, knots and interlacings [1]. 
Complex knotwork patterns were used profusely in the Celtic illuminated manuscripts, such as in the 
Books of Durrow (early 5th to early 6th century), Kells (middle 6th to early 8th century), Lindesfarne 
(late 7th century), and Grirnbald of St. Bertin (early 11th century). In these manuscripts, interlacing 
designs (both purely geometric, as in Figure 1, and incorporating animal figures) fill areas and are used as 
borders for text and illustrations. Fran~oise Henry called these designs a "sacred riddle" [7], and their 
symbolic meaning is a fascinating and unresolved issue in Celtic art history. James Trilling [to] has 
theorized that knotwork designs were, like the crosses that they commonly accompanied, protections 
against evil: the complex designs would trap and confuse the "evil eye". 

Figure 1: A knotwork design, from [5 J 

Whatever their meaning, the complexity of Celtic knotwork designs is ~vidence of substantial 
mathematical sophistication [4], and their design and analysis lead to many mathematical questions. 
Several authors [2, 9] have studied methods by which the Celtic artists may have constructed their 
designs. Peter Cromwell [3] studied the symmetries of Celtic knotwork as strip patterns. In this paper we 
look at a deceptively simple question: How many different components (closed loops) are there in a given 
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knotwork design? This is the first step towards measuring the "complexity" of a design, and perhaps (if 
Trilling is correct) its protective powers. It is also a question particularly appropriate for Celtic art. 
While knotwork and interlacing designs appear in many traditions, the designs are not always "closed off' 
into a finite number of loops. In Islamic art, for example, interlace patterns are often part of an infinite 
plane, in which some strands never close into loops at all [6]. 

In addition to assisting in the analysis of Celtic art, methods for determining the number of 
components in a design can assist artists in creating new work. Some writers have claimed that the ancient 
Celts used designs with a single component to represent continuity and eternity (though there seems to be 
no clear evidence one way or the other) [9]. Modem artists may do the same or, conversely, prefer more 
than one component so that the design may be colored with multiple colors. 

We will not give a complete answer to the problem of counting components. Celtic knotwork designs 
can easily become immensely complex - the design in Figure 1 is a relatively simple example, yet its 
structure still exceeds our methods of analysis- and it will take much more work to develop a general 
approach. We will only examine a few fundamental designs: the basic knotwork panels and their 
extensions to rectangular and circular border designs. Our method is to study how the braiding in the 
designs changes the order of the strands, so each design corresponds to some permutation of the strands. 
With this viewpoint, to compute the number of components in the design, we count the number of cycles 
in the permutation, which is a relatively easy mathematical problem. Along with the details of our results 
we will provide several examples and illustrations. 

2. Counting Components in Knotwork Designs 

2.1 Knotwork Panels. The history of the development of Celtic knotwork designs is still a subject of 
debate. One popular theory, proposed by 1. RomiUy Allen [1], is that Celtic knotwork (as welll;lS other 
interlace traditions) developed from plaitwork panels used in Roman decoration. The basic plaitwork 
panel can be described using a square grid with p rows and q columns. The process is illustrated in 
Figure 2. We begin with the grid, and in each square draw the inscribed square whose vertices are the 
midpoints of the original square. Where two of the inscribed "diamonds" meet, we insert a crossing: if 
the diamonds are meeting on a vertical line of the original grid, the strand connecting the bottom left to 
the top right will be on top; if they are meeting on a horizontalljne, the strand connecting the top left to 
the bottom right will be on top. Finally, we erase the original square grid. (We could, of course, reverse 
all the crossings; but this would not affect the number of components in the design.) To get the 
traditional "ribbon" designs, as in Figure 3, we simply thicken the knot into a ribbon. 

Figure 2: Constructing a basic 2 x 3 knotwork pane~ 

More complicated knotwork designs are formed from the basic plaitwork panel by making breaks in 
the pattern - erasing a crossing and rejoining the four strands in one of the other two possible ways (top to 
top and bottom to bottom, or right to right and left to left). This leads to designs such as Figure 1. 
However, in this paper we will only be considering the basic plaitwork pattern - as we will see, even this 
is not a trivial problem! 

The construction that we have given of the plaitwork pattern is more convenient for the 
m~thematician than for the artist - for a practical method for creating these panels (and many other 
designs) see Bain [2] and Meehan [9]. Notice that these knots and links are alternating - as we travel 
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along one strand, the crossings alternate between over- and under-crossings. A component of a design is a 
closed loop in the design. If the design has only one component, we will call it a knot; otherwise, we will 
call it a link. Our first problem is to count the number of components in the basic panel design. It is well 
known that a p x q panel will have one component when p and q have no common factors, and that a p x 
p square panel has p components [2, 3]. We will generalize these facts to give a formula for the number 
of components in any panel. We will prove our formula in two ways - one that is more intuitive, and one 
that introduces the mathematical machinery of permutations that we will use in the rest of the paper. 

p 4 q =6 p =12 q =15 

Figure 3: Examples of knotwork panels 

Theorem 1: The number of components in a p xq knotwork panel is given by the greatest common 
divisor gcd(p, q). 

Figure 3 shows two examples of Theorem 1. In particular, the 4 x 6 panel has 2 = gcd(4, 6) strands, 
and the 12 x 15 panel has 3 = gcd(12, 15) strands. We will first approach this result from an intuitive, 
topological point of view. Since our construction of the knotwork panel begins with a square grid, every 
line in the design has slope 1 or -1. Imagine an ant traveling along one strand in the panel, beginning at 
the left side of the panel. Eventually the ant will traverse the entire component and begin to retrace its 
steps - how long will this take? Since the strands only change direction at the boundaries of the grid, to 
return to its starting point (facing in the same direction that it started) the ant will need to follow the 
strand across the grid and back some number of times both horizontally and vertically. So the ant will 
travel a distance 2pj vertically and a distance 2qk horizontally (for some integers j and k). (The factor of 
2 is needed because the ant travels across the grid and back.) Since the ant is always traveling one unit 
vertically for each unit horizontally (and vice-versa), this means that 2pj = 2qk, wherej and k are integers. 
For each complete circuit of the component, j (or k) represents the number of times the ant travels across 
the panel and back in the vertical (or horizontal) direction, respectively. Our goal is to find the smallest 
values of j and k for which this occurs (to find the first time the ant returns to its starting point). This 
means that pj = qk = lcm(p, q), where lcm(p, q). is the least common multiple of p and q. Since pq = 
lcm(p, q)·gcd(P, q), we can conclude that k= p and j= q 

gcd(p,q) gcd(p,q) 

Since k is the number of times the ant walked across the full width of the panel in the horizontal 
direction, it also gives the number of times the ant turned around at the left side of the panel. This 
number did not depend upon which strand the ant started, so every strand must meet the left side the same 
number of times. Since the total number of times all strands meet the left side of the panel is p, the 
number of different strands is f = gcd(p, q), as desired (we could make the same argument using q and j 

and the top of the panel). 
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A nice consequence of this argument is that, since each component of the design meets the left (and 

right) side of the panel k= p times and the top (and bottom) of the panel j= q times: 
gcd(p,q) gcd(p,q) 

Each component is, on its own, a k xj knotwork panel. 
While this approach to the problem is very natural, it is difficult to extend it to other designs. We will 

describe another approach, based on the mathematics of permutations, which extends very nicely to 
several other designs. To begin with, imagine a vertical strip of a panel. A p x q panel has 2p strings 
running horizontally across it, intertwining with each other (several;- or all; of these strings may belong to 
the same component). Starting at the left side, number the strings 1 to 2p from top to bottom (so strings 1 
and 2 will be parts of the same component, as will 3 and 4, and so forth). As we follow the strings to the 
right, their positions change. We will look at how these positions change as we move to the right across 
one column of the original square grid; we denote this permutation 0;,. Figure 4 shows an example with p 
=4. 

>5«: 1- :II y: 1- :II >X<: :II - " :II - , 3_1 y: 3-1 ,,- . 
~x: 

11- 1I ,- 6 

.- 1 ~X5 
5- 3 /t5X 41 7- II 6-7 

0<7 
1-7 :X 6 

7- 5 

/1 1 7 V 7 

0'4 Y 3.5 

Figure 4: Permutations of strings. 

Permutations are often represented using cycle notation. For example, the permutation of the set {I, 
2, 3} that sends 1 to 2,2 to 3 and 3 to 1 is represented by the 3-cycle (123). The permutation of the set 
{ 1, 2, 3, 4, 5} which sends 1 to 2 and 2 to 1, 3 to 5 and 5 to 3 and leaves 4 fixed would be written 
(12)(35)(4). We can visualize these cycles as shown in Figure 5. 

1 3 
1 

/\ 
3 01( 2 1 1 4 

2 5 

(123) (12) :&5) 4) 

Figure 5: Cycles in permutations 

We can "multiply" permutations by performing one after the other and looking at the result. Products 
of permutations are traditionally read from right to left. For example, the product (123)(12)(35)(4) of the 
permutations in Figure 5 sends 1 to 2, and then 2 to 3, so the product sends 1 to 3. Similarly, we can see 
that the product sends 3to 5, and 5 to 1, so we have a cycle (135). Finally, the product fixes 2 and 4. In 
cycle notation, we write that (123)(12)(35)(4) = (135)(2)(4). 
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Returning to our knotwork panel: In cycle notation, the permutation 04 in Figure 4 is (12468753). In 
general, the permutation is op = (124 ... 2p 2p-1 2p-3 ... 53), which is always a 2p-cycle. When the strings 
hit the left or right sides of the panel, they "bounce" with a permutation 4, = (12)(34)(56) ... (2p-1 2p) 
because neighboring strings switch places. 

So if we follow the strings from the left side of the panel to the right and back again, bouncing off 
each end, when we return to our original position (moving once again to the right), the total permutation 
is given by the product w=op(O'prqop(O'p)q. We want to simplify this permutation and split it into 

disjoint cycles (so no number appears in more than one cycle). At this point, each cycle will correspond 
to a component of the panel. In fact, each component of the design corresponds to two of these cycl~s: If 
we start at any point on the component,. one cycle describes our path around the component moving in 
one direction, and the other cycle describes the path if we move in the other direction. 

First note that (O'p)-lOp(O'p)-l =op (this is easy to check and is left as an exercise). So 

(O'pr1op =opO'p, which means that we can rewrite w as (Op)2(O'p)2q = (O'p)2q (since 4, has order 2). 

Now we use a fact about permutations: if we multiply a single cycle of length n by itself m times, the 
product will consist of gcd(n, m) disjoint cycles .. Since op is a single 2p-cycle, the number of disjoint 
cycles in w is gcd(2p, 2q) = 2gcd(p, q). Since each component of the panel corresponds to two of these 
cycles (traversing the component in both directions), the number of components is once again gcd(p, q). 

In the fol~owing sections, we will extend this approach to several other basic designs. 

2.2 Circular Borders. Circular motifs are also common in Celtic knotwork designs, often appearing as 
elements in larger designs, such as stone carvings or illuminated manuscripts [2, 8]. They are also found 
in modem designs influenced by the Celtic tradition. . 

Figure 6: The 2.5 x 12 circular border has 1 component and the 2 x 12 circular border has 4 
components. The 1.5 x 3 circular border (the Borromean link) has three components. 

The simplest circular knotwork design is made by bending a p x q knotwork panel into a circle, and 
joining the left and right sides to get a p x q circular border. Three such designs are shown in Figure 6. 
Cromwell [3] noted that knotwork paneis must have an even number of horizontal strings in order to close 
up (a p x q panel has 2p strings). In circular designs, however, there can be an odd number of strings, so . 
p can be a half-integer as well as an integer. Figure 6 shows examples of each type. There is, once again, 
a simple formula for the number of components in the design. The simplest circular borders are well 
known to knot theorists, although by other names - the 1 x 3 circular border is the trefoil knot, and the 1.5 
x 3 circular border is the Borromean link. Figure 6 shows the Borromean link; a tiny trefoil knot can be 
seen in the center of the design. 

Theorem 2: The number of components in a p x q circular border is gcd(2p, q).-
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Notice that when p is a half-integer, 2p is odd, so the design will have an odd number of components. 
As an example, in Figure 6, the figure on the left has gcd(5, 12) = 1 component, the figure in the middle 
has gcd(4, 12) = 4 components, and the Borromean link has gcd(3, 3) = 3 components. We will prove 
Theorem 2 using the permutation technique we developed in Section 2.1. We first consider the case when 
p is an integer, so the permutation across one "diamond" is once again op. In the circular case, the 
permutation of the strings as we travel once around the design is w = (a p)q. So, w splits into gcd(2p, q) 

disjoint cycles, each of which corresponds to a different component of the design. Unlike the case in 
Section 2.1, we are only following the strings in one direction, so we do not need to divide by 2. So the 
number of components is gcd(2p, q). 

On the other hand, if p = k + 112 for some integer k, then we need to consider a slightly different 
permutation. In this case, there are 2p = 2k + 1 strings winding around the design. The permutation of 
the strings as we move one unit clockwise around the design (i.e. one "qth" of the way around) is given by 
n, = (1 2 4 ... 2p-1 2p 2p-2 ... 5 3), a 2p-cycle. The right illustration in Figure 4 shows the case when p = 
3.5. So the permutation as we make a complete circuit of the design is w = (Yp) q. Sincen, is a 2p-cycle, 

the number of disjoint cycles in w is once again gcd(2p,q), as desired. 

2.3 Rectangular Borders. Our methods are easily adapted to looking at rectangular borders, or frames of 
constant width. In general, frames have three parameters: the height p, the breadth q and the width (of 
the band) n. We will refer to such a frame as a p x q frame of width n. Note that n, as for circles, may be 
either an integer or a half-integer, such as 1.5. Figure 7 shows several examples. 

Figure 7: Examples offrames: 5 by 5 of width 2,5 by 5 of width 1.5,5 by 6 of width 2, and 5 by 7 of 
width 2 

The number of components in a frame design is given by the following theorem: 

Theorem 3: The number of components in a p x q frame of width n is equal to 2gcd(jp - ql, n) (if n is an 
integer) or to gcd(jp - ql, 2n) (if n is a half-integer k + 112, with k an integer). Here we require 2n < min 
(p, q). 

Notice that, as with circles, if the width of the frame is an integer then there is an even number of 
components, and if the width is a half-integer then there is an odd number of components. If we apply 
this result to the examples in Figure 7, we see that the designs (from left to right) have 2gcd(5 - 5,2) = 4 
strands (0 is divisible by anything), gcd(5 - 5,3) = 3 strands, 2gcd(6 - 5,2) = 2 strands and 2gcd(7 - 5,2) 
= 4 strands. Once again, we will use permutations - as with the circular borders, the arguments are 
simpler and more natural than with the panels, since we do not need to worry about "bouncing" off the 
sides. The permutation of the strings of the design as we go along the sides is given by an or Yn, 
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depending on whether n is an integer or a half-integer. In addition, we need to determine what happens as 
we "tum a comer" in the design. We will denote the permutation of the strings around a comer by ~ if n 
is an integer, and by f3n if n is a half-integer. Figure 8 illustrates Q4 and fh.5. 

In general, we can see that ~ = (12)(34)(56) ... (2n-l 2n); in fact, ~ is the same as 4 from Section 2.1. 
Similarly, f3n = (12)(34)(56) ... (2n-2 2n-l)(2n) (note that in this case 2n is odd). Recall from Section 2.1 
that (O'n)-lan = tXnO'n. It is also easy to show that (Ynrl Pn = PnYn' 

12345678 1 2 3 4 5 6 7 

%C~~~~ 
:1 --.. 2 lXXX) 1 --+ 2 
2 --.. 1 

%C~~x 
2 --+ 1 

3 --.. " 3 --+ 4 

~XXX " --.. 3 *'XX 4 --+ 3 

*XXX> 5 --.. 6 

*XXX 5 --+ 6 
6 --.. 5 6 --+ 5 

*~~~~ 
7 --.. 8 

7 --+ 7 
8 --.. 7 ~"'V"'VV 

U 4 (3 3.5 

Figure 8: Permutation of strings around comers. 

If n is an integer, the permutation of the strings around the frame is given by the product of the four 
sides and four comers: 

W = (O'n)q-2n an (O'n)p-2n an (O'n )q-2n an (O'n)p-2n an 

= ~O'n)q-2n a n(O'n)P-2n an) 

= ~ O'n)q-2n ( O'n)2n-p (an)2)= ~O'n)q-P) = (O'n)2(q- p) 

The number of disjoint cycles in this permutation (and hence the number of strands in the design) is 
therefore gcd(i2(q - p)l, 2n) = 2gcd(1P - ql, n). 

If n = k + 112, the permutation of the strings around the frame is given by 
W =(Yn)q-2n Pn('y,,)p-2n Pn(Yn)q-2n Pn(Yn)p-2n Pn 

= (Yn)2(q-P) 

The number of disjoint cycles is therefore gcd(12(q - p)l, 2n) = gcd(2lq - pi, 2k + 1). Since 2k + 1 is 
odd, the greatest common divisor must be odd, so we can ignore the factor of 2 in the first term. So the 
number of strands of the design is equal to gcd(1P - ql, 2n). 

2.4 Half-frames or L shapes. We can apply the techniques we have developed to a wide range of 
designs involving a strip of constant width that makes right angle turns. A simple example of such a 
design is half of a frame, or an L shape. A p x q L of width n has height p, base length q and is made 
from a strip of width n. As with panels, n must be an integer. Examples of L shapes are shown in Figure 
9. 

Theorem 4: The number of components (strands) in a p x q L shape of width n is gcd(jp - ql, nJ. 
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Figure 9: Examples of L shapes:4 by 5 of width 2, 5 by 5 of width 2, 6 by 6 of width 2. 

We can check this formula on the examples in Figure 9. The design on the left has gcd(5 - 4,2) = I 
strand, the design in the middle has gcd(5 - 5,2) = 2 strands, and the design on the right has gcd(6 - 6,2) 
= 2 strands. We prove the formula using the same methods as before. Using the permutations we have 
defmed in the earlier sections, the permutation of the strings in the L is obtained by beginning at the top, 
traveling to the bottom, turning a comer, traveling to the end, "bouncing" and eventually returIiing to our 
original position (after turning the comer and bouncing off the top to face down again). This permutation 
is w = On(O'n)-(p-n)an (O'n)-(q-n)On (O'n)q-n an (O'n)p-n • Using the relations we developed in the earlier 

sections, we can reduce this to 
W = (O'nV- n( O'n )-(q-n)(O'n r(q-n)(O'ny-n = (O'n)2(p-q) • 

So the number of disjoint cycles is gcd(21P - ql, 2n) = 2gcd(1P - ql, n). As with knotwork panels, each 
component of the design is counted by two of these cycles, so the number of components is gcd(lP-ql, n). 

3. Conclusion 

Obviously, there is much more work to De done. Another common design is the Celtic Cross, and many 
other designs do not involve strips of constant width, but have strips of different widths joining with each 
other - these will require new techniques to analyze. And, of course, we have not even begun to analyze 
the effects of "breaking" the basic plaitwork pattern. We have presented a few basic ideas and results, but 
these are only a ftrst step. 
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