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Abstract

Kepler’sHarmonice Mundiincludes a mysterious arrangement of polygons labeled Aa, in which many of the poly-
gons have fivefold symmetry. In the twentieth century, solutions were proposed for how Aa might be continued in a
natural way to tile the whole plane. I present a collection of variations on Aa, and show how it forms one step in a
sequence of derivations starting from a simpler tiling. I present alternate arrangements of the tilings based on spirals
and substitution systems. Finally, I show some Islamic star patterns that can be derived from Kepler-like tilings.

1. Introduction

Can a tiling of the plane be produced in which every tile has fivefold rotational symmetry? The question
seems first to have been explored by Johannes Kepler inHarmonice Mundi. Although he did not resolve the
question one way or the other, he did produce some remarkable tilings in the process of seeking an answer.
They are reproduced in the frontispiece of Grünbaum and Shephard’sTilings and Patterns[3]. The general
problem remains unsolved to this day [1, 2, 7], although solutions exist in which no bound is placed on the
sizes of tiles.

Every finite drawing of a tiling requires the viewer to make a tacit assumption that the drawing could
in theory be continued in an obvious way to cover the whole plane. In each case, that assumption may
conceal a mathematical problem of lesser or greater difficulty. In many of Kepler’s simpler drawings, the
manner of continuation may indeed be considered obvious. But the same is not true for his arrangements
that include shapes with fivefold symmetry.

Of these arrangements, the drawing labeled Aa is perhaps the most intriguing. It contains more tiles
than its brothers Z and Bb; it seems as if Kepler was more confident of the continuation of this tiling. Indeed,
we now know that Aa can be extended to a tiling of the plane. It is far less obvious what Kepler had in mind
for Z and Bb (though Gr̈unbaum and Shephard mention a possible solution for Bb).

One possible method of tiling the plane as an extension of Kepler’s Aa is attributed to Dessecker and
described by Gr̈unbaum and Shephard [3, Section 2.5]. Consider the36◦ rhomb in Figure 1(a). The interior
of the rhomb can be marked with whole and partial polygons. It turns out that when laid out edge-to-edge
in a periodic pattern, copies of this rhomb generate a periodic tiling by pentagons, pentacles, decagons, and
“fused decagon pairs” that Kepler called “monsters”. Remarkably, this rhomb can also fit snugly with a
rotated copy of itself staggered by one half of a rhomb edge (and not by the golden ratio, as Grünbaum and
Shephard claim). Moreover, the rhombs can then be put into an arrangement with finite symmetry group
d5 in such a way that the markings on them form a non-periodic tiling of the plane. This new non-periodic
tiling contains Kepler’s Aa patch as a subset. The rhomb tiling and Kepler tiling are given in Figure 1(d)
and (e).
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(a) (b) (c) (d) (e)

Figure 1 A demonstration of the construction of Kepler’s Aa tiling. The rhomb in (a) forms a periodic
tiling in (b), and its markings form a corresponding periodic tiling in (c). Because this rhomb can also
meet a copy of itself staggered by half an edge length, the arragement of rhombs in (d) also produces a
valid tiling, as shown in (e).

(a) (b)

Figure 2 A simple tiling by pentagons and rhombs, with one possible translational unit shaded. In (b), the
translational units are rearranged into ad5-symmetric tiling in the spirit of Kepler’s Aa.

In this paper, I use Kepler’s Aa as a starting point for a process of exploration. First, I show how the
Aa tiling is but one step in a larger progression of related tilings based on36◦ rhombs. I then show how to
create spiral arrangements of rhombs, giving attractive new tilings. I show how these rhombs can be used
as a basis for developing substitution systems, producing additional related tilings without being tied to the
underlying rhombs. Finally, I explore some of the decorative possibilities that arise when these tilings are
used as templates for the construction of Islamic star patterns.

2. Other Kepler rhombs

Kepler’s rhomb in Figure 1(a) can be derived in a fairly natural way from a simpler tiling. In fact, this
derivation produces an infinite sequence of marked rhombs, each of which can then generate tilings of the
plane in the same ways as Kepler’s. In this section, I explain the derivation and demonstrate the first few
members of the sequence.

We begin with a well-known periodic tiling by regular pentagons and36◦ rhombs, as shown in
Figure 2(a). One natural translational unit for this tiling is a larger rhomb centred on a rhombic tile. This
translational unit also contains fragments of pentagonal tiles adding up to two whole pentagons. We refer
to this marked rhomb ask1. Observe that copies ofk1 can meet in the same ways as the rhomb used in
Kepler’s Aa, and indeed can produce a similard5-symmetric tiling, as shown in Figure 2(b).
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k1 k2' k2 k3 k4' k4 k5

Figure 3 A sequence of marked rhombs, all of which lead to Kepler-like periodic and non-periodic tilings.

Figure 4 Periodic and non-periodic tilings by marked rhombk2.

In every tiling generated by the markings onk1, the angles between adjacent edges at a vertex are
multiples of36◦. It is therefore possible to surround every vertex by a regular decagon in such a way that the
vertex’s edges are perpendicular bisectors of the decagon edges. Thus we place a decagon at every vertex,
scaled so that they meet edge-to-edge when the underlying vertices are adjacent. This substitution yields the
marked rhombk2′ in Figure 3. This rhomb produces a tiling with decagons (some of which overlap) and
five-pointed stars. We can produce a simpler design,k2, by deleting the regions where decagons overlap,
resulting in a single large shape that is the union of two decagons. Note that the decagons overlap differently
than in the arrangement of Figure 1(a). Inspired by Kepler’s use of the name “monster”, in previous work
I classified Kepler’s shape as a(10, 2)-monster and the new shape ink2 as a(10, 3)-monster [4, Section
3.10]. Periodic andd5-symmetric tilings byk2 are shown in Figure 4.

In k2 andk2′, the angles at every vertex are multiples of 72 degrees. We can therefore perform a
similar process as above, this time placing scaled regular pentagons around every vertex. Performing this
substitution onk2 yields the rhombk3, which is none other than the generator of Kepler’s Aa.

We can continue this process indefinitely, alternately placing decagons or pentagons at vertices to
produce finer subdivisions of a36◦ rhomb. At every step, we get a new source of Kepler-like tilings. Figure 3
shows the first few steps of this substitution sequence, ending ink5.

Occasionally we will want to adjust the outcome of the substitution. In some cases I replace overlap-
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Figure 5 Periodic and non-periodic tilings by marked rhombsk4 andk5.

e1 e2' e2

Figure 6 Other marked rhombs that yield interesting tilings. The
rhomb labelede1 is due to Eberhart. Rhombe2′ is a simple mod-
ification suggested by Grünbaum and Shephard. On the right,e2
is the same ase2′ but with the enclosing rhomb shifted slightly
relative to the underlying periodic tiling.

Figure 7 A d5-symmetric tiling
constructed using copies ofe1.

ping decagons with an alternate arrangement of smaller tiles; in others I fill large empty regions with tiles.
Both adjustments can be seen in the transition fromk4′ to k4 in Figure 3. Tilings byk4 andk5 appear in
Figure 5.

Grünbaum and Shephard also present an alternate rhomb, due to Stephen Eberhart. It is labelede1 in
Figure 6. This rhomb generates two sizes of regular pentagon, and uses a fused pair of pentacles. Because
e1 is not centrally symmetric, it cannot be derived in an obvious way fromk1. Unlike k3, Eberhart’s rhomb
really does fit with copies of itself staggered by the golden ratio. Note that a slight variation ofe1 is also
possible in which the fused pentacles are replaced by two half-pentacles and a pentagon. This attractive
alternative is labelede2′ in Figure 6. Figure 7 shows ad5-symmetric tiling generated by copies ofe1.

3. Spiral arrangements

In all of the cases above, rhombs can meet their neighbours either edge-to-edge or staggered by some
amount. These possibilities lead naturally to periodic tilings or tilings with finite symmetryd5. The stag-
gered layout suggests that a third arragement of rhombs should also be possible, one where rhombs spiral
outward from a centre. Figure 8(a) shows a spiral arrangement of36◦ rhombs that can meet their neighbours
staggered by half an edge length. The only additional question is how to fill the leftover space in the middle
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(a) (b) (c)

(d) (e)

Figure 8 The tiling in (a) is a spiral arrangement of36◦ rhombs that can meet their neighbours staggered
by half an edge length. This arrangement leaves an unfilled regular decagon in the middle of the tiling.
Tilings (b), (c), (d), (e) are examples of spiral arrangements using rhombsk1, k2, k3, andk4 respectively.

of the tiling. I have developed plausible arrangements of tiles through experimentation. In every case, I have
tried to avoid introducing new tile shapes. Examples of spiral tilings based onk1, k2, k3, andk4 are given
in Figure 8.

Figure 9(a) shows a spiral arrangement based one1. Becausee1 meets itself staggered by the golden
ratio, the central decagon is not regular, but the region can still be filled by introducing half pentacles. The
spiral tiling by e2′ is evidently similar in structure. Interestingly, the arrangement of tiles ine2′ can be
translated relative to the surrounding rhomb to produce a new rhombe2. This new rhomb generates the
same periodic andd5 tilings of the plane ase2′. But the resulting spiral tiling is different, as shown in
Figure 9(b).

4. Related substitution tilings

If we superimpose any of the rhombs of Figure 3 on top of any other, a recursive structure suggests itself.
For example, every tile fromk3 can be seen as filled by smaller tiles fromk5. Any of these superpositions
leads to a substitution system that produces new tilings from old ones. These systems are reminiscent of
Penrose’s early experiments that ultimately led to his discovery of the aperiodic tile set that Grünbaum and
Shephard refer to asP1 [6]. Two examples of substitution systems inspired by the Kepler rhombs are given
in Figure 10. In Figure 11, a related tiling is coloured in.
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(a) (b)

Figure 9 Examples of spiral tilings based on rhombse1 ande2.

Figure 10 Examples of substitution tilings inspired by examination of the Kepler rhombsk1, k3, andk5.
The top diagram shows a simple substitution system that permits decagons to overlap in36◦ rhombs. In
the bottom diagram, this overlapping is extended to the point where explicit rhombs are unnecessary, and
the entire tiling can be regarded as composed of pentagons, pentacles, and overlapping decagons.
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Figure 11 A colourful example of a substitution tiling. This example uses the substitutions defined in the
top diagram of Figure 10, but includes a final step that replaces some repeated arrangements of smaller
tiles with large symmetric ones.

5. Kepler star patterns

Because these tilings contain many regular polygons, it is natural to consider them as templates for producing
Islamic star patterns via the polygons-in-contact method [5]. Figure 12 gives two examples of Kepler-based
star patterns. The first is derived from the original Kepler Aa tiling. The second is based on the substitution
system at the bottom of Figure 10. In both cases, small adjustments must be made so that attractive motifs
can be found for pentacles. Novel motifs must also be supplied for overlapping decagons (or, equivalently,
monsters). Details on both adjustments are given in previous work [4, Section 3.10].

The use of Kepler’s tilings as a base for constructing Islamic star patterns is a satisfying mix of art
and mathematics from across different centuries and cultures.
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Figure 12 Rendered star patterns that use Kepler tilings as templates.
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