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Abstract

This paper describes a method for producing a striking animation of the explosions that take place as the
parameter c that defines the Mandelbrot Set is allowed to traverse a path from inside the large cardioid
component of the Mandelbrot Set into one of the attached “bulbs” or other regions just outside the set. The
presentation will include the animation itself, as well as some of the colorful images obtained by stopping
the animation at various points.

1. Introduction

Mathematicians  and artists  are  familiar  with  the  famous  orbit  diagram  for  the  real-valued
function fc(x) = x2+c where we see successive period-doubling bifurcations and eventual chaos as the
real parameter c decreases along the real number line from 1/4 to -2. In this case the parameter c is
actually traveling one of the many paths from c = 1/4 to the outer reaches of the Mandelbrot Set at c =
-2. Because we are dealing with real numbers we can plot the fixed or periodic points of fc on one axis
as a function of the parameter c on the other axis. Suppose we want to examine the dynamics by
letting c travel along a different path from the origin to some point outside the Mandelbrot Set; in this
case both the parameter c and the fixed point w will be complex numbers. How are we to visualize the
changing dynamics in this case? By expressing both c and w as functions of a single parameter, r, we
can make an animation by plotting several thousand points in the orbit of 0 under fc(z)= z2+c for each
r, as c travels various escape routes from the Mandelbrot Set, M. By assigning the color of the points
in the orbit as a function of r we can create some quite spectacular animations. In [2] I explore the
escape routes from M; each route comes with its own unique dynamics and its own amazing graphics
illustrating the transition from order to chaos.

         Figure 1: Examples of images obtained by stopping  the animation
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2. How to find the escape routes

The first step in finding the escape routes is to express both c and the fixed point w as a function of a
single parameter r.  To find a fixed point, w, of fc(z) = z2+c, we solve the equation

(1) w2+c = w, and we note that w is attracting if
(2) 12)( <=′ wwf , or |w| < 1/2.

We are going to be interested in the set M1={c | fc(z) has an attracting fixed point}. Solving  (1)  for c
we get  c = w – w2 and from (2)  letting w = (r/2)ei2πθ gives

(3) c = 
42

422 πθπθ ii erre − , 0≤ r <1, 0 ≤θ <1.

The boundary of  this region (r = 1) is the large cardioid  (the boundary of M1)  in the Mandelbrot  Set.
It  is  well  known  (see  any of the references)  that  for  c on  this  boundary  the  dynamics  of  fc  are
determined by the value of θ.

         If θ = 
q
p

, p and q natural  numbers with p <  q and gcd(p,q) = 1,  then  at  the  point  c on

the boundary of  M1 a hyperbolic component  (or  what  Devaney  calls  a  “bulb”) is  attached to  M1..
We  will  call  this bulb Mp/q.  The corresponding  fixed  point  is  neutral and is a  parabolic fixed
point. At  this parabolic fixed point the attracting  fixed  point  bifurcates  into  an  attracting  periodic
cycle  of  period  q.  For r  < 1  the  corresponding  w  is  attracting  and  there  is  a  repelling  cycle of
period q surrounding w.

Figure 2: Transition from 1/4  to 1/5: Orbits keeping r fixed at .975; θ  varies from 1/4  to 1/5
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(Note that for the real orbit diagram θ = 1/2 and the bifurcation is period-doubling i.e. q = 2.) As r
approaches 1 from below, the fixed point w and the repelling cycle coalesce into the neutral fixed point.
As r increases beyond 1, c moves into Mp/q, the fixed point w becomes repelling and the period q cycle
becomes attracting. Smaller bulbs are attached to each Mp/q and for c in one of these bulbs fc has an
attracting cycle of some finite period (the period will be a multiple of q).

For θ “sufficiently” irrational there is a neighborhood of w = (1/2)ei2πθ called a Siegel
disk. In this neighborhood orbits of nearby points look like deformed circles surrounding the fixed point
w [4]. There are many books containing beautiful pictures of fractals illustrating the complicated
dynamics for values of c near the boundary of the Mandelbrot Set. What we want to do here is to
describe how to create an animation of the orbits as c follows the path (3) from inside M1  across the
boundary and into one of the bulbs, or near one of the bulbs.

Figure 3. Transition from 1/10 to 1/9: Orbits keeping r fixed at 1.00438; θ varies from 2π/10 to 2π/9

3. Orbits for different values of r and θ

In Figures 2 – 4 we show orbits of a single point for various values of r and θ. In Figure 2 we have kept
r fixed at .975 and we let θ vary in increments from 1/4 to 1/5. Since r < 1, in each case there is an
attracting fixed point. In each frame 2000 points in the orbit of 0 were plotted. In the first frame
(p/q = 1/4) points in the beginning of the orbit surround the fixed point in a “4-pattern”. This is
very clear when we color every 4th point the same color.

  

                      Figure 4. Transition from attracting fixed point to attracting 3-cycle; θ is fixed
                       at 2π/3;  first picture r = .99 (r < 1), second picture r = 1.025 (r  > 1)
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Similarly in the last frame (p/q = 1/5) we can see the “five”ness of the pattern. In between we see
other types of orbits; for example in the third frame p/q = 4/17 and the orbits fall into a “17-pattern”.
Incredibly, as p/q varies from 1/4 to 1/5, there is an uncountably infinite variety of orbit patterns. In
Figure 3 we have let r be slightly greater than 1 and p/q vary from 1/10 to 1/9. In the first frame we
see an attracting cycle of period 10 and in the fourth frame we see an attracting cycle of period 9. In
between we see an attracting cycle of period 29 in the second frame and another kind of behavior in
the third frame

In Figure 4 we see the orbits of 0 where θ is fixed at 2π/3; in the first picture r < 1 and
there is a fixed point in the center of the screen; in the second frame r > 1 and there is an attracting
cycle of period 3. Using three colors and coloring every third point in the orbit the same color gives us
a better picture of how the orbits behave.

4. The relationship between the fixed and periodic points

To find the cycles of period n for Qc we have to solve Qc
n(w) = w. There will be 2n of them. When c =

0, this means wn = w. The solutions will be w = 0 (the attracting fixed point) and the 2n-1 th roots of 1.
So they will be distributed around the unit circle. For example, if n = 3 there are two fixed points, w =
0 (attracting), w= 1 (repelling) and two 3-cycles: {ei2П/7, ei4П/7, ei8П/7} and {ei6П/7, ei12П/7, ei10П/7}.

If we let w = (r/2)ei2πp/q,  p and q relatively prime natural numbers with p < q, be  the
fixed  point, and c = w – w2 , when r = 0, w = 0 and there will be at least one repelling q-cycle
distributed around the unit circle. In the last paragraph p/q = 1/3 and there were two repelling 3-
cycles. As r increases to 1, the fixed point moves along the ray (r/2)ei2πp/q and one of the repelling q-
cycles surrounds the point w, moving ever closer to w. At  r = 1 the fixed point w and the q-cycle

coalesce. At r = 1 |Qc’(w)| = 1 and the multiplier of the cycle, )(
1

wQ i

q

i
c∏ ′

=

= 1. This point is called a

parabolic fixed point of Qc. As r increases beyond 1, the q-cycle becomes attracting and the fixed
point becomes repelling. (See Figure 5)

Figure 5: Three stages in the animation where θ = 2π(1/6). The first frame shows a close-up of the
center of the screen after r has increased to about .987; in the second frame r has increased to 1.04.
The third frame is a close up of the action near one of the points in the attracting 6-cycle seen in the
second frame.
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5. Building the Animation

For each value of θ, where w = rei2πθ /2 and c = w – w2, we animate the scene by choosing the center
of the computer screen to be the point where the fixed point and cycle coalesce. We allow r to
increase in small increments and for each r we plot some number (to be chosen by the user) of points
in the orbit of 0. Each orbit is plotted in a different color determined by r, using a continuous ramp of
colors. The results are quite spectacular.

After writing the program animating the orbits, we incorporate that program into a
larger program where we continuously change the value of θ and observe the amazing changes in
dynamics as θ travels around the unit circle. Some of the more spectacular pictures occur when θ is
not rational. In this case the parameter c exits M for a brief moment before re-entering in one of the
bulbs. Figure 5 shows three stages in the animation where θ = 2π(1/6). In Figure 6 we have illustrated
what the screen looks like for θ = 2πp/q, where p and q are successive Fibonacci numbers. It is known

that the values θ =
2

51+−
, r = 1 admit a Siegel Disk where orbits behave like deformed rotations

about the fixed point w.

Figure 6: θ = 2πp/q, where p and q are successive Fibonacci numbers. In the first frame p = 8, q =
13; in the second frame p = 55, q = 86; in the third frame p = 141, q = 227. In all frames we let r
increase to about .99026 before stopping the animation

Figure 7 shows some stills from the animation for different values of r and θ.

6. Conclusion

Expressing the fixed point and the parameter c as a function of r and θ allows us to produce virtually
any kind of orbit that we choose for the function fc(z) = z2+c . Then by varying the parameters in small
increments, we can animate the continuous change that takes place in the nature of the orbits as the
parameters change. I have found that this parameterization helps students in a fractals class to find
values that yield interesting orbits as in Figure 8. It might suggest other ways of animating different
dynamical systems. We might explore using color as a function of the parameters in other ways. For
many people visualizing mathematics is vital to understanding it; conversely, understanding the math
allows us to create visually compelling images.
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Figure 7. In the first frame θ = 2πp/q where p = 1251 and q = 5000; stopped at r = 1.1987.  In
the second frame θ = 2πp/q where p = 251 and q = 500; stopped at r = .99459

                                   

Figure 8. Orbits of z2+ c
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