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Abstract 
 

In the following paper we are going to present some of our surprising new findings, which encourage us to continue 
our long-term investigation of the movement and other interesting properties of Spidrons1. We undertook here to 
present the peculiar tilting of some of the spidron edges during the continuous spidron movement, the simultaneous 
appearance of different angles, which are typical of cubic and diamond lattices, spidronized Penrose-tilings, the 
Kepler-tile shadows of certain edges of quasicrystals that are defined by the bisections of them by specific spidron-
nests, and other curiosities. 

 
 
 
 

Introduction 
 
We have described the parts, the definition and several features of the spidrons many times, in earlier 
Bridges presentations and in the bibliography attached as reference, but since then we have created new  
variations. One only needs basic knowledge from earlier articles and the present paper to understand these 
special curiosities. So instead of giving a long description we are demonstrating the spidron (fig.1), the 
spidron-arm (fig.2),  the spidron-ring (fig.3) and the spidron-nest (fig.4) through images. 
One of the most intriguing properties of spidron-nests is the (continuous) foldability. Figure 4 shows a 
spidron-nest seen from the top in the flat position, and in figure 5 it is shown in a folded position. Also 
some edges and their midpoints are indicated. These midpoints remain in the base-plane during the 
folding of the nest. This can be seen easier from the side of the nest, see figure 6. 
  

  
 

Figure 1: Spidron 
 

Figure 2: Spidron-arm 
 

Figure 3: Spidron-ring 
                                                 
1 Spidron has been a Registered Trademark since 2007 
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Every ring of a spidron-nest is surrounded at the outside by a regular skew polygon, which can be 
described by defining two kinds of angles: 
 
- The f-angle is the angle between an edge of the skew polygon and the base-plane. 
- The g-angle is the angle between two adjacent edges of the skew polygon.  

 
The properties of a spidron-nest during the folding can be described by these f and g-angles. 
The relation between these two angles can be found by the equation: 

                 
where n is the number of vertices of the regular skew polygon. 

 
 

  
 

Figure 4: Flat spidron-nest, seen from above 
 

Figure 5: Folded spidron-nest, seen from above 
 
 

 

 

 
 

Figure 6: Folded spidron-nest, seen from side view 
The midpoints of the appropriate edges remain in the base plane during the folding. 
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1. Bounding Ellipsoid 

 
 

 
Figure 7: Bounding ellipsoids and shadows of the skew polygons 

 
 
 
Concentric skew polygons surround the levels (i.e. rings) of the spidron-nests. The vertices of any 
spidron-like folding regular skew polygon move on the surface of a circular ellipsoid in 3D. The equator 
of this ellipsoid is the circumcircle of the flat regular n-gon (this is the outer polygon of the flat nest), say 
with radius r. The length of the vertical axis – which is the only rotational axis of the ellipsoid – in the 
center is equal to the edge-length of each edge in the skew polygon, say d. Then  
 

 
Any point (x, y, z) on the ellipsoid follows the equation: 
 

 
The ellipsoid can be seen as a sphere with radius r, vertically scaled down by a factor, which equals  
 

 
 
So the shape of the ellipsoid is only depending on n. 
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2. Monotonous change of one angle giving rise to local extrema elsewhere 
 
 
There are two ways to introduce the spidrons: 
 

a) The spidron-nests observed consist of joined rings, on which the inner and outer edges are n-sided 
regular skew polygons2 with varying g-angles3.  
 
b) The spidron-nests observed consist of spidron-arms that are made up by placing two different sets 
of similar triangles in alternating sequence. 

 
For the sake of simplicity we will demonstrate the mentioned phenomenon on the so called "classic 
spidron". The classic spidrons consist of alternating sequences of equilateral triangles and isosceles 
triangles with 120° vertex angles, as shown in figures 1 to 6. In case of the classical spidron-nests the f-
angles of successive edges are decreasing to zero towards the center. 

                    
        

Figure 8: The movement of two edges on the L1 and L2 levels during the folding process can be shown in 
an orthogonal coordinate system, seen from two different points of view (figures by Lajos Szilassi) 

 
If the external edges of the outermost ring of a spidron-nest – the first level (L1) – are rotated out 
of the base plane (the angle of rotation is the f-angle), then the L2 internal edges of the same ring 
also rotate, but they rotate less. In the meantime, due to the folding process, the midpoints of the 
edges move towards the centre of the nest. The angles of rotation of those two groups of edges are 
shown in the table below. The first row shows the angles of rotation f1 of the L1 edges, while the 
second row shows the angles of rotation f2 of the L2 edges. The maximum possible f1 angle is 60°, 
as at that point the plane triangular faces approaching each other touch. But at f1 = 48.1897° there 
is an interesting phenomenon: The f2 angle reaches a local maximum! The same turnaround also 
occurs on the further rings (L3, L4, L5, etc.), although to a lesser and lesser extent. At that point, 
the value of f2 is such that the L2 edges are perpendicular to each other, so these edges of the 
spidron nest fit onto six edges of a cube (so g2 is 90°). This subnest bounded by the L2 edges 
divides the cube into two parts of equal volume with chiral symmetry. 

                                                 
2 In our paper we call regular skew polygons each of the skew polygons which have equal f- or g-angles and equal edge-lengths 
and where the vertices aren’t in the same plane. 
 
3 In the flat position,  when the nest is in the base plane, these g-angles are equal to π (n-2)/n. 
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Figure 9: Angles of L2 edges (f2) as a function of the angles of L1 edges (f1): 

at f2=35.2644°, at the maximum, these edges coincide with the edges of a cube 
 

 
 

3. Simultaneous appearance of the typical angles of cubic and diamond lattices 
 
 
The second interesting feature is also related to the f angles. When the edges of L2 coincide with the edges 
of a cube, then f1 = 48.1897°, and in that position, g1 is 70.5288°, which is exactly the adjacent angle of 
the characteristic angle of the diamond lattice, 109.47°. The interval of f1 edges in which pairs of distinct 
f1 values have identical corresponding f2 values (with the single exception of f1 = 48.1897°, which only 
has one f2 value, 35.2644°) is demonstrated in the table above. It is for instance quite clear that the f2 = 30° 
value corresponding to the f1 = 60° extreme value reappears where f1 = 33.5573. 
 

 
Figure 10: Simultaneous appearance of cubic and diamond angles 
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4. Kepler’s shadows 
 
 
Based on an idea of Marc Pelletier and Amina Bühler-Allen we constructed regular 10-sided skew polygons 
oriented in planes perpendicular to the edges of the acute and obtuse (A6,O6) golden rhomboids of quasi-
crystals at their midpoints. Then we noticed various Kepler tilings4 from certain views. Once the regular 
skew polygons were filled with spidron nests, we obtained “dodeca spidro-balls” and aperiodic spatial 

byrinths. 
 
la

 
 

Figure 11: Joined 10-sided spidron nests in planes perpendicular to edges at their midpoints 
        

 
  

  
 

Figure 12: The two golden rhomboids (A6 and O6) and the rhombic triacontahedron, with 10-sided 
spidron nests bisecting their edges. The resulting Kepler tiling is clearly visible from this point of view. 

 
 

  
 

Figure 13: Spidron nests on the edges of a rhombic icosahedron also project to a Kepler tiling 

                                                 
4 Kepler tilings are pentagonal tiling systems, first described by Kepler in his book "Harmonia Mundi" in 1619. 
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5. “Spidrose” tiles 

 the matching rules described by 
onway, because now the rules are encoded in the shapes themselves. 

 

 
 
The next interesting result is that we were able to transform Penrose tiles into plane figures delimited by 
special spidron edge sequences. In this way we got “Spidronised Penrose Tiles”, and so we called them 
“Spidrose”-tiles. They eliminate the need for the markers enforcing
C
 

F  
tilings with special spidron edge sequences. This change makes the matching markers unnecessary. 

 

 

igure 14: With a clever idea, Marc Pelletier replaced the edges of the darts and kites of the Penrose

 

 
Figure 15: Nicely shaped aperiodic tessellation corresponding to a Penrose tiling 
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