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Abstract
We describe how to construct map-colored mosaics. When viewed from afar, they resemble familiar images. When
viewed from up close, they look like properly colored maps.

1 Introduction

After a long day of coloring maps, a cartographer might view agrid of squares (Figure 1(a)) as an uncolored
map. To color this map, the cartographer would follow the traditional map-coloring protocol and assign
colors to countries in such a way that no two countries (squares) that share a border (edge) receive the
same color. The Four Color Theorem states that, at least in the plane, four colors suffice; never will the
cartographer need more. When coloring a grid of squares, oneneeds only two colors, as in Figure 1(b). But
with four (or more) colors, much more interesting and aesthetically pleasing results can be achieved. For
example, with four colors a grid of squares might take on the likeness of the Mona Lisa’s right eye, as in
Figure 1(c).

Figure 1: (a) an uncolored map, (b) colored with two shades of gray, (c) colored with four shades of gray

In this paper, we describe how to produce pictures like Figure 1(c). We call themmap-colored mosaics.
When viewed from afar, they resemble familiar images. When viewed from up close, they look like properly
colored maps. In a properly colored map, no two countries that share a border can share a color. In a
map-colored mosaic, no two tiles that share an edge can sharea color.

2 The Map-Colored Mosaic Design Problem

We begin with a user-supplied target image, a map (a tiling ofthe plane with copies of one or more tiles), and
a small set of colors (usually between four and eight). We first assume that our target image is in grayscale,
our map is a grid of squares, and all of our colors are different shades of gray.
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Furthermore, we assume that our target image consists ofm rows andn columns of pixels and that our
map is a grid that consists ofm rows andn columns of squares. We denote the brightness of the rowi,
column j pixel—pixel (i, j)—by βi, j ∈ [0,1], where 0 stands for completely black, 1 stands for completely
white, and intermediate values stand for intermediate shades of gray.

Finally, we assume that we only haveχ colors. (We refer to them as colors even though they are just
shades of gray.) We denote the brightness of colorc∈ {1, . . . ,χ} by bc, using the same 0-to-1, black-to-white
scale we use for the pixel brightnesses.

Our goal is to construct anm×n mosaic that (1) when viewed from afar, resembles the target image as
much as possible, and (2) when viewed from up close, looks like a properly-colored map. To attain this goal,
we use integer programming formulations as in [2-4].

3 A Simple Integer Programming Formulation

For each square(i, j) and each colorc, we must decide if we will paint square(i, j) with color c. We model
this with binary variables, settingxi, j,c equal to 1 if we do indeed paint square(i, j) with color c, and setting
xi, j,c to 0 if we don’t. We need a total ofχmn such variables.

Given that we want our mosaic to resemble our target image as much as possible, we need to be able to
measure our mosaic’s “goodness of fit” with our target image.Our strategy is to compute a separate error
term for each square of the mosaic and then add them all up. If we paint square(i, j) with color c, then it
will have brightnessbc, whereas pixel(i, j) has brightnessβi, j. So one possible error term for square(i, j) is

χ

∑
c=1

∣

∣bc −βi, j
∣

∣xi, j,c,

and another is
χ

∑
c=1

(bc −βi, j)
2 xi, j,c.

We use the first one, which gives us the goodness-of-fit measure

m

∑
i=1

n

∑
j=1

χ

∑
c=1

∣

∣bc −βi, j
∣

∣xi, j,c

for our model’s objective function.
To force ourselves to paint square(i, j) with precisely one colorc, we incorporate the following equation

into our model:
χ

∑
c=1

xi, j,c = 1.

We need a total ofmn such equations.
To force ourselves to paint squares(i, j) and(i, j +1) with different colors, we introduce, for each color

c ∈ {1, . . . ,χ}, the inequality
xi, j,c + xi, j+1,c ≤ 1.

This inequality prohibits us from painting both square(i, j) and its right neighbor, square(i, j + 1), with
color c. We need a total ofχm(n−1) such inequalities.

Similarly, to force ourselves to paint squares(i, j) and(i + 1, j) with different colors, we introduce, for
each colorc ∈ {1, . . . ,χ}, the inequality

xi, j,c + xi+1, j,c ≤ 1.
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This inequality prevents us from painting both square(i, j) and its lower neighbor, square(i + 1, j), with
color c. We need a total ofχ(m−1)n such inequalities.

We end up with the following integer programming formulation:

minimize z =
m

∑
i=1

n

∑
j=1

χ

∑
c=1

∣

∣bc −βi, j
∣

∣ xi, j,c

subject to
χ

∑
c=1

xi, j,c = 1 for each 1≤ i ≤ m, 1≤ j ≤ n

xi, j,c + xi, j+1,c ≤ 1 for each 1≤ i ≤ m, 1≤ j ≤ n−1, 1≤ c ≤ χ
xi, j,c + xi+1, j,c ≤ 1 for each 1≤ i ≤ m−1, 1≤ j ≤ n, 1≤ c ≤ χ
xi, j,c ∈ {0,1} for each 1≤ i ≤ m, 1≤ j ≤ n, 1≤ c ≤ χ .

This formulation is simple and fast but yields low quality mosaics for small values ofχ . Each of the mosaics
displayed in Figure 2 was produced in a fraction of a second byCPLEX [8] on a 3.2 GHz Pentium IV PC.

Figure 2: The Mona Lisa’s Eyes, simple formulation (m = 18,n = 54) (a)χ = 4, (b)χ = 8

The four-color mosaic (Figure 2(a)) is recognizable, but crude. The eight-color mosaic (Figure 2(b))
achieves a better likeness. We encourage the reader to view both of these mosaics (and all of the others
displayed in this paper) from two vantage points: from up close and from afar (e.g., from across the room).
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4 An Alternate (Block) Formulation

The problem with the simple integer programming formulation is that it measures the mosaic’s goodness of
fit by comparing each individual square with its corresponding pixel. Recent research on matrix rounding
and digital halftoning [1,5] suggests another approach: comparing each two-by-two block of squares with its
corresponding two-by-two block of pixels.

Consider them× n matrix M whose row-i, column-j entry gives the number of the color in the row-i,
column-j position of our mosaic. LetQ equal the set of all 2×2 matrices thatcould bea 2×2 block ofM.
Note thatQ =

(q11 q12
q21 q22

)

∈ Q if and only if each entry ofQ belongs to{1, . . . ,χ} and no two adjacent entries
are equal (in other words,q11 6= q12, q11 6= q21, q12 6= q22, andq21 6= q22).

In this formulation, for each 1≤ i < m, each 1≤ j < n, and eachQ =
(q11 q12

q21 q22

)

∈ Q, we setyi, j,Q equal
to 1 if we place the upper-left corner of blockQ in square(i, j), painting square(i, j) with color q11, square
(i, j + 1) with color q12, square(i + 1, j) with color q21, and square(i + 1, j + 1) with color q22. So, in this
formulation, setting a variable equal to 1 paints an entire two-by-two block of squares. It turns out that we
need a total of[χ(χ −1)2 + χ(χ −1)(χ −2)2](m−1)(n−1) such variables.

Here is our alternate (block) formulation:

min z =
m−1

∑
i=1

n−1

∑
j=1

∑
Q∈Q

∣

∣(bq11 + bq12 + bq21 + bq22)− (βi, j + βi, j+1 + βi+1, j + βi, j+1)
∣

∣ yi, j,Q (1)

s.t. ∑
Q∈Q

yi, j,Q = 1 for each 1≤ i ≤ m−1, 1≤ j ≤ n−1 (2)

∑
Q∈Q:

q12=u,q22=v

yi, j,Q = ∑
R∈Q:

r11=u, r21=v

yi, j+1,R for each 1≤ i ≤ m−1, 1≤ j ≤ n−2, (3)
and 1≤ u,v ≤ χ : u 6= v

∑
Q∈Q:

q21=u,q22=v

yi, j,Q = ∑
R∈Q:

r11=u, r12=v

yi+1, j,R for each 1≤ i ≤ m−2, 1≤ j ≤ n−1, (4)
and 1≤ u,v ≤ χ : u 6= v

yi, j,Q ∈ {0,1} for each 1≤ i ≤ m−1, 1≤ j ≤ n−1, Q ∈ Q.

The objective function, (1), measures goodness of fit by comparing the total brightness of each two-by-
two block of squares (bq11 + bq12 + bq21 + bq22) with the total brightness of the corresponding two-by-two
block of pixels (βi, j +βi, j+1+βi+1, j +βi, j+1). The type (2) equations make sure that we paint each and every
two-by-two block of squares, and the type (3) and (4) equations make sure that we paint the two-by-two
blocks in such a way that they overlap with each other both horizontally and vertically.

q21 v r22

q11 u r12

i+1

i

j j+1 j+2

r21 r22

u v

q11 q12

i+2

i+1

i

j j+1

Figure 3: (a) horizontal overlapping, (b) vertical overlapping.

When thinking about the type (3) equations it helps to consider Figure 3(a), and when thinking about
the type (4) equations, it helps to consider Figure 3(b). Theleft-hand side of a type (3) equation counts how
many blocksQ of the form

(q11 u
q21 v

)

we place in square(i, j). The right-hand side counts how many blocks

R of the form
(u r12

v r22

)

we place in square(i, j + 1). Note that each side is either 0 or 1 (due to the type (2)
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equations and the fact that the variables are binary.) By setting the left-hand and right-hand sides equal, we
force the blocks to overlap horizontally.

The block formulation does have its drawbacks. It is certainly harder to understand. It has many more
variables and constraints than the simple formulation (on the order ofχ3 times the number of variables, and
on the order ofχ times the number of constraints). And it is slow. It is so large that to solve it, we had to
divide the problem into sections, creating a dozen columns of the mosaic at a time. Still, the advantage of the
block formulation is that it produces high quality mosaics even for small values ofχ . The four-color mosaic
displayed in Figure 4 (which required about a minute for CPLEX) is much nicer than the one in Figure 2(a).
In fact, we strongly prefer it to the eight-color mosaic displayed in Figure 2(b). It uses half the number of
colors, yet when viewed from a distance, it still achieves a better likeness of the target image.

Figure 4: The Mona Lisa’s Eyes, block formulation (m = 18,n = 54, χ = 4)

5 Modifying the Mosaic

Once we have created a map-colored mosaic that pleases us, wecan modify it by replacing its square tiles
with other tiles that behave like squares. By doing this, we obtain images that are reminiscent of Escher-like
tessellations [6,10] or Huff-like parquet deformations [7,9] when viewed from up close, yet still look like
familiar images when viewed from a distance. See Figures 5 and 6.

Figure 5: The Mona Lisa’s Eyes, block formulation, propeller tiles (m = 18,n = 54, χ = 4)
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Figure 6: The Mona Lisa’s Eyes, block formulation, parquet deformation (m = 18,n = 54, χ = 4)

6 Other Tilings

One can adapt both the simple and block formulations for non-square tilings based on hexagons, equilateral
triangles, rhombuses, etc., but it is usually much easier toadapt the simple formulation. Figure 7 displays a
six-color map-colored mosaic, based on a hexagonal tiling,that we created by solving a hexagonal version
of the block formulation. Figures 8-10 display what happenswhen we replace the hexagons with pinwheels,
a Mongolian three-pronged arrow design, and Escher-like lizards.

Figure 7: The Mona Lisa’s Eyes, block formulation, hexagons (χ = 6)

7 Color

It is also possible to adapt the formulations so that they work with different color palettes. The main difficulty
is that the user needs to specify the color palette in advance. A palette that works well for one target image
may fail spectacularly for another. See Figure 11 for a successful example.
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Figure 8: The Mona Lisa’s Eyes, block formulation, pinwheels (χ = 6)

Figure 9: The Mona Lisa’s Eyes, block formulation, arrows (χ = 6)
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Figure 10: The Mona Lisa’s Eyes, block formulation, lizards (χ = 6)

Figure 11: Girl With A Pearl Earring, simple formulation, parquet deformation (χ = 25)
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