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Abstract

Thetilings (n.3.n.3) existin the spherical Euclideanor hyperbolicplane,dependingon whethern is lessthan,
equalto, or greaterthan6. In all caseghe dual tiling consistsof rhombi, which canbe takenin pairsto form
"regular”" concavehexagonsin the caseof the sphericalexampleghetilings canbe illustratedby colouringthe
facesof rhombic polyhedra.ln the Euclideanplane "regular” concavehexagonsallow tilings that cannotbe
constructedfrom the dual (6.3.6.3)tiling, someof which allow analogoustilings of non-"regular’concave
hexagons. Some Escher-like designs are derived from such tilings.

Some of the possibilities in the hyperbolic plane are briefly considered.
Some Concave Spherical Hexagons

Previously[1] | describedpolyhedrathat can be producedby removing parts of the small stellated
dodecahedrorhaving fifteen facesthat are equilateraltriangles,andfifteen that are concavepentagons
(figure 1). Thetwo typesof facearealwayspaired,andit is conveniento think of a pair assomekind of
irregularfolded hexagonwhich canbe projectedonto the surfaceof a spherewith centrecoincidentwith
the centre of the original small stellated dodecahedron.

Figure 1: The small
stellated dodecahedron, and
two views of a polyhedron
derived from it that has five-

fold symmetry.

These polyhedrahave two types of vertex, twelve that are vertices of the convex hull (a regular
icosahedron)andtwenty that are verticesof the regulardodecahedrofrom which the original stellation
is derived.lIt follows thatin the projectionthey are the verticesof a sphericaltriacontahedronandthe
spherical hexagonsconsist of pairs of spherical rhombi. The resulting spherical tilings can be
conveniently indicated by colouring faces of the triacontahedron in pairs (figure 2).

@ O

Figure 2: Two polyhedra with triacontahedra coloured in corresponding ways. One pair has 5-fold
symmetry, the other has 3-fold symmetry.

Sincetherearefifteen hexagonghe only possiblesymmetricalpolyhedrahave3-fold or 5-fold symmetry,
asillustratedin figure 2. In bothcaseghe hexagonsarounda symmetricalvertexcanbearrangedn either
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sense,so each polyhedronexistsin four forms (two enantiomorphicpairs). Mirror symmetryis not
possiblesinceany planewould haveto bisectat leastonehexagonpecausdifteen is anodd number,and
it would cut adjoining hexagonsnon-symmetrically.There is a large number of non-symmetrical
arrangements.

The triacontahedrons the dual of the icosidodecahedrorwith vertex symbol (5.3.5.3).Thereare two
other face-regularrhombic polyhedra, the rhombic dodecahedronthe dual of the cuboctahedron,
(4.3.4.3),andthe cube,the dual of the octahedron(3.3.3.3).In both of thesecaseghe rhombicfacescan
be taken in pairs corresponding to tilings of concave hexagons on the sphere.

In the caseof therhombicdodecahedrotherearesix concavenexagonso that,althoughit is possibleto
place four hexagonssymmetrically arounda 4-valent vertex, this leavesonly two hexagonsso that
complete4-fold symmetryis impossible.There is a natural arrangementwith 3-fold symmetry that
corresponds to Coffin's "pennyhedron puzzle” [2]

It is easy to make three pairs of adjacent cubic faces, in only one way, with 3-fold symmetry.

Euclidean Tilings

Sincethe Euclideanplaneis infinite thereis no limit to the numberof waysedgescanbe removedfrom
the dual (6.3.6.3)tiling to produceconcavehexagonsgevenif we consideronly periodic tilings with
rotational symmetry.It is instructive,however,to consideranalogueof the symmetricalpolyhedrain
figure 2. A generalstrategyis to startat a symmetricalvertexandto add successiveings of hexagonal
tiles, noting that the 3-valentverticesoccur at the concavevertexandat the two off-centre120 angles.
At the local level the main differenceis the additionof extratiles at the 5-fold verticesto makethem6-
fold.

In the lower half of the right-handillustrationin figure 1 the hexagongconcavepentagont triangle)in
the second(equatorial)ring have their two concaveedgesmeetingedgesof one hexagonin the first
(lower) ring. Thethird (upper)ring is like thefirst ring: five hexagonsarounda symmetricalvertex.The
Euclideananalogugfigure 3) consistwof six concavehexagonatiles combinedto form aregularhexagon
(thefirst ring) with tiles atits corners(the seconding). Regularhexagonsorrespondingo the third ring
meetthe tiles of the secondring in the sameway asthosein the sphericalcase,with convex3-valent
vertices.

Figure 3: A Euclidean analogue of the spherical tiling with 5-fold symmetry.
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Thereis only onehexagonaplanesymmetrygroupwithout mirrors, p6, or 632in orbifold notation.The
patchescorrespondindo the first two rings are centredon 6-fold axes,but the patchescorrespondingo
thethird ring, which alsohavelocal 6-fold symmetry arecentredon 2-fold axesof thetiling. The patches
formed by the tiles that must be added (red in the figure) are centred on the 3-fold axes of the tiling.

Applying the sameprocesdrom the top of theright-handillustration of figure 1, sothe orderof ringsis
reversed, generates a different tiling pattern (figure 4).

Figure 4: An alternative Euclidean analogue of the spherical tiling with 5-fold symmetry.

Spiral Tilings

All of thetilings consideredofar arederivedfrom dualsof (n.3.n.3), andno alternativeis possibleon the
sphereln the Euclideanplane,however the anglesof the concavehexagonsarecommensurableoit is
possibleto disregardthe distinction between3-valent and 6-valent vertices. In particular chevron
arrangements are possible, which allows the two spiral tilings described towards the end of [3])(figure 5

0202007

Figure 5: The two spiral tilings possible with 66oncave hexagons.
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The patchesof tiles aroundthe central vertex, six in the 3-armedexample,eighteenin the 6-armed
example,observethe vertexrestrictions,and can be seenas Euclideananaloguef somesymmetrical
patcheghatoccurin sphericattilings. The straightsectionsof the spiral paths,however,do not fit onthe
dual (6.3.6.3)tiling, andit is not possibleto identify verticesaseither3- or 6-valent.The pairsof tiles at
the cornersof the spiral paths wherethereis a60 turn, arethe only neighbourghatpreserverertextype
in this way.

Edge-deformation

Thetiling patternsof M.C.Escherareall periodic,or derivedfrom periodicdrawings[4] (obviouslyapart
from thosethat involve no elementof symmetryat all and the sphericalexamples),and the standard
methodsof constructionrely on periodicity to ensurethat complicatedshapeswill fit togetherproperly.
Inspectionof the spiraltilings in [1] suggestshatthe usualtechniqueof edge-deformatiomwill not work
with them, sinceedgesmeetcopiesof many otheredgeswhich in turn meetcopiesof many edges,so
that thereis no consistentway to deform the edgeswithout generatinga large numberof differently
shapediles. Therearesomecircumstanceshowever,in which spiraltilings canform the basisof Escher-
like patterns with only two shapes of tile.

If an edgeis a straightline segmentt hastwo lines of (local) symmetry,itself andits perpendicular
bisector(and, of coursetogetherthey generatea rotationalsymmetryof order2). The symmetrycanbe
brokenby losing eitherline of symmetry,or both. Breakingthe symmetryalongthe line of an edge,for
exampleby the edgebecominga concaveor a convexcirculararc, is consideredn [5]. Figure6 showsa
modification of the 3-armed spiral in figure 5 with edges that are all circular arcs.

Figure 6: A modified version
of the 3-armed spiral in
figure 5, having edges that
are circular arcs.

Suchlocal symmetry-breakingf the edgesof atile derivedfrom aregularpolygonis possibleonly when
thetiling doesnotrely on specialcircumstancedpr examplethetile havingonly oneconcavevertex(see
[5] for details). The 6-armedspiral in figure 5, and the periodic tilings in figures 3 and 4 dependon
particular properties of hexagons,so there is no equivalent edge-deformationthat preservesthe
monohedral tilings.

If edgesarereplacedby aline of arbitrary shapewe needto considerits orientationbetweernverticesas
well asits orientationbetweenfaces(concave/convexn figure 6, for example).The local symmetryof

the edgesn a perpendiculatine could,in principle, be brokenin tilings suchasthosein figures3 and4,

wherethereis a consistencyin the way verticesare arrangedFor exampleedgescould be labelledwith

arrows directed from 3-valent vertices to 6-valent vertices.

Figure7 showsthe 3-armedspiral of figure 5 with the edgeseplacedby arbitrarycurves.Two shapeof

tile areneededbecausehereis no way to directthe edgesbetweenverticesin a consistentvay. Notice
that the shapeof tile alternatealongthe spiral path, exceptat the corners,wherethereare pairs of the
sameshape,as expectedirom the earlier observationaboutvertex type in spiral tilings. In fact spiral
tilings of this type existfor all ordersof rotationalsymmetry,sincethe "regular" concavehexagonghat
consistof two 60 rhombi canbe transformednto non-"regular'concavehexagonghat consistof two
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different rhombi, that will still tile an infinite wedgethat can form the fundamentaldomain of some
rotational symmetry. Figure 7 also showsa 4-armedspiral, previously describedin [1], with edges
substitutedoy the samearbitrarycurve.Tiles of the sameshapeform v-shapedzonesandthe structureis
closely related to the way this 4-armed spiral is coloured in [6]

Figure 7: A modified version of the 3-armed spiral in figure 5, and an analogous 4-armed spiral.

While oneof thetile shapesespeciallyin the 3-armedcase could makequite a convincingbird, the other
doesnot suggestany realistic form, howeverstylized. In the caseof the 60 concavehexagonit is

possibleto arrangethe curvededgesso thatthey startandfinish with straightsectionghatarecoincident
in some parts of the tile boundary (figure 8).

Figure 8: An alternative version of the 3-armed spiral.

This changeconvertsthe "awkward"tile into quite a reasonabldird, andthe bird tile into a more-or-less
dog shape(figure 9). The problemwith thesesubstitutionss thatthe sameshapemustbe substitutedor
everyedge(althoughin different orientations)so that thereneedsto be a compromisewhat producesa
bettershapeat one placemakesa worseone at another.The dogsin figure 9, for example,do not bear
close scrutiny, although the birds (doves maybe?) are reasonably convincing.

In atiling suchasthat of figure 6 the concaveedgeof onetile coincideswith the convexedgeof its
neighbour.This is the sameas the relationshipbetweendirected edgesif they are consideredin an
intrinsic way, i.e. clockwise or anticlockwisearoundthe tile. A directededgein a tiling is clockwise
aroundone of its tiles and anticlockwisearoundthe other. This observationsuggestsanotherkind of
edge-deformationyherethe orientationof anedgeis eitherclockwiseandconcavepr anticlockwiseand
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convex.A consequencis thatall the edgesn thetiling arerelatedby directisometriesandthereareno

mirror images.

Figure 11 showsanexampleof this type of edge-deformatiomppliedto thetilings in figure 5. The edges
aredirectedin the sameway asthosein figure 7 (alternately),andthis determinegheir orientationwith
respectto faces("concave"or "convex"). Again there are two shapesof tile, for the samereasonas
before.Sincethe centralpatchof the 6-armedspiral tiling canbe derivedfrom the dual (6.3.6.3)tiling,
and the rest of the tiling consists of chevron elements they are consistent with it.
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Figure 10: Interchanging tile shapes still gives a consistent tiling.

In generalspiral tilings of the type describedin [1] require mirror-imagecopiesof tiles, but if all the
edgesaredeformedso that they arerelatedby directisometriesmirror imagecopieswill notfit. In this
casefour different shapeof tile are neededa pair wherecorrespondingdgesarerotatedby 180 with
respecto eachother,anda pair basedon the mirror imagebut with edgeshataredirect copiesfrom the
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first pair, againwherecorrespondingedgesarerotatedby 180 with respecto eachother. The 3-armed
spiralin figure 11 is a specialcase becauset is basedon "regular" concavehexagonghat havemirror
symmetry, so the two pairs are the same.

The sameideacanbe apppiedto thetiling illustratedin figure 6. Edgesthat are somerandomshapeare
directedaccordingto whetherthe the circular arcis concaveor convex.This time in generaltwo shapes
of tile are sufficient, andfigure 12 is equivalentto figure 7, but with tiles relatedby directisometries
only.

Figure 12: A different edge-deformation of the tilings in figure 7.

Hyperbolic Tilings

Thetilings (n.3.n.3)lie in the hyperbolicplaneif n>6,andonceagaintilings of concavenexagonganbe
producedby removing edgesfrom the dual tilings. As with sphericalgeometrythe size of polygons
dependsn the sumof their internalangles,anda problemwith imagesof thesetilings, which is worse
for higher valuesof n, is that most of the interestingstructuregets pushedto the edges,whichever
projection is used.

Whenn=7, theimageis not too distorted,and DouglasDunhamhaspresented tiling of butterfliesthat
indicateshow the tiles might look, althoughhe usesedge-deformationthat are lessrestrictedthanthe
onesneededor spiraltilings [7]. In this casethe anglesof the concavehexagonsareincommensurable,
sothatthereis a distinction between3-valentand 7-valentverticesin anytiling. Commensurablangles
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occurwhenevem is divisible by 3, so the smallestvaluein the hyperbolicplaneis 9. Analoguesof the
Euclidean3-armedspiral shouldbe possible althoughextratiles mustbe fitted into the equivalentof the
rows of chevrons Whenn=12 two tiles will fit into the concaveangle,andit seemghat somekind of

branchingspiral tiling might be possible.Evenwhen n=9 projectionsof hyperbolictilings are pushed
guite far to the perimeter, so it is likely that images of these tilings will be quite disappointing.

Not a lot of softwareexistsfor investigatinghyperbolictilings, andwhatis availableis designedaround
full symmetry typically isohedratilings. The spiraltype of tilings havea singlecentreof symmetry,and
theyarenot easilyinvestigatedThe beststrategyseemso involve colouringtilings of trianglesmanually.
Very little hasbeenattemptedandthereis muchto be discoveredput the resultsare unlikely to leadto
striking images for the reasons already discussed.

Conclusion and Further Possibilities

Tilings of concavehexagonsexistin spherical Euclideanandhyperbolicgeometriesandthey providea

rangeof decorativepossibilities. Thetechniqueof edge-deformatiohasbeenusedin all threegeometries
by Escher[4], and it can be appliedin theseexamples.Griinbaumand Shephard'slassification of

isohedraltilings [8] can be usedto find possibilitiesin the Euclideanplane that can be producedby

deleting edges from IH30-37.

Thereare more constraintson edge-deformationt ensurethey will work with spiraltilings of concave
hexagonsIn particulareveryedgemustbe the sameshape Somepossibilitieshavebeendescribedand
they illustrate aspectof structurethat are not apparenin the examplespreviouslydescribedn [3] that
haveedgesthat are straightlines. Thereare relatedtilings describedn [5], with moreillustratedin the
extendedonline version[9], to which the techniqueof edge-deformatiorcould be applied, providing
further decorative possibilities, and maybe additional insight into their structures.

All of thetiles consideredcirecompound®f two rhombi,sothey havespecialpropertiespeingzonogons.
There are other classicaltilings and polyhedrathat have quadrilateralfacesthat are not rhombi. It is

unlikely that they will provide sucha rich sourceof possibilities,but some other tilings of concave
hexagons can be generated by deleting edges from them, with properties yet to be investigated.
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