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Abstract
The tilings (n.3.n.3) exist in the spherical, Euclidean or hyperbolic plane, depending on whethern is less than,
equal to, or greater than 6. In all cases the dual tiling consists of rhombi, which can be taken in pairs to form
"regular" concave hexagons. In the case of the spherical examples the tilings can be illustrated by colouring the
faces of rhombic polyhedra. In the Euclidean plane "regular" concave hexagons allow tilings that cannot be
constructed from the dual (6.3.6.3) tiling, some of which allow analogous tilings of non-"regular" concave
hexagons. Some Escher-like designs are derived from such tilings.
Some of the possibilities in the hyperbolic plane are briefly considered.

Some Concave Spherical Hexagons

Previously [1] I described polyhedra that can be produced by removing parts of the small stellated
dodecahedron, having fifteen faces that are equilateral triangles, and fifteen that are concave pentagons
(figure 1). The two types of face are always paired, and it is convenient to think of a pair as some kind of
irregular folded hexagon, which can be projected onto the surface of a sphere with centre coincident with
the centre of the original small stellated dodecahedron. 

Figure 1: The small
stellated dodecahedron, and
two views of a polyhedron

derived from it that has five-
fold symmetry.

These polyhedra have two types of vertex, twelve that are vertices of the convex hull (a regular
icosahedron), and twenty that are vertices of the regular dodecahedron from which the original stellation
is derived. It follows that in the projection they are the vertices of a spherical triacontahedron, and the
spherical hexagons consist of pairs of spherical rhombi. The resulting spherical tilings can be
conveniently indicated by colouring faces of the triacontahedron in pairs (figure 2).

Figure 2: Two polyhedra with triacontahedra coloured in corresponding ways. One pair has 5-fold
symmetry, the other has 3-fold symmetry.

Since there are fifteen hexagons the only possible symmetrical polyhedra have 3-fold or 5-fold symmetry,
as illustrated in figure 2. In both cases the hexagons around a symmetrical vertex can be arranged in either
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sense, so each polyhedron exists in four forms (two enantiomorphic pairs). Mirror symmetry is not
possible since any plane would have to bisect at least one hexagon, because fifteen is an odd number, and
it would cut adjoining hexagons non-symmetrically. There is a large number of non-symmetrical
arrangements.
The triacontahedron is the dual of the icosidodecahedron, with vertex symbol (5.3.5.3). There are two
other face-regular rhombic polyhedra, the rhombic dodecahedron, the dual of the cuboctahedron,
(4.3.4.3), and the cube, the dual of the octahedron, (3.3.3.3). In both of these cases the rhombic faces can
be taken in pairs corresponding to tilings of concave hexagons on the sphere.
In the case of the rhombic dodecahedron there are six concave hexagons so that, although it is possible to
place four hexagons symmetrically around a 4-valent vertex, this leaves only two hexagons, so that
complete 4-fold symmetry is impossible. There is a natural arrangement with 3-fold symmetry that
corresponds to Coffin's "pennyhedron puzzle" [2].
It is easy to make three pairs of adjacent cubic faces, in only one way, with 3-fold symmetry.

Euclidean Tilings

Since the Euclidean plane is infinite there is no limit to the number of ways edges can be removed from
the dual (6.3.6.3) tiling to produce concave hexagons, even if we consider only periodic tilings with
rotational symmetry. It is instructive, however, to consider analogues of the symmetrical polyhedra in
figure 2. A general strategy is to start at a symmetrical vertex and to add successive rings of hexagonal
tiles, noting that the 3-valent vertices occur at the concave vertex and at the two off-centre 120° angles.
At the local level the main difference is the addition of extra tiles at the 5-fold vertices to make them 6-
fold.
In the lower half of the right-hand illustration in figure 1 the hexagons (concave pentagon + triangle) in
the second (equatorial) ring have their two concave edges meeting edges of one hexagon in the first
(lower) ring.  The third (upper) ring is like the first ring: five hexagons around a symmetrical vertex. The
Euclidean analogue (figure 3) consists of six concave hexagonal tiles combined to form a regular hexagon
(the first ring) with tiles at its corners (the second ring). Regular hexagons corresponding to the third ring
meet the tiles of the second ring in the same way as those in the spherical case, with convex 3-valent
vertices.

Figure 3: A Euclidean analogue of the spherical tiling with 5-fold symmetry.
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There is only one hexagonal plane symmetry group without mirrors, p6, or 632 in orbifold notation. The
patches corresponding to the first two rings are centred on 6-fold axes, but the patches corresponding to
the third ring, which also have local 6-fold symmetry, are centred on 2-fold axes of the tiling. The patches
formed by the tiles that must be added (red in the figure) are centred on the 3-fold axes of the tiling.
Applying the same process from the top of the right-hand illustration of figure 1, so the order of rings is
reversed, generates a different tiling pattern (figure 4).

Figure 4: An alternative Euclidean analogue of the spherical tiling with 5-fold symmetry.

Spiral Tilings

All of the tilings considered so far are derived from duals of (n.3.n.3), and no alternative is possible on the
sphere. In the Euclidean plane, however, the angles of the concave hexagons are commensurable, so it is
possible to disregard the distinction between 3-valent and 6-valent vertices. In particular chevron
arrangements are possible, which allows the two spiral tilings described towards the end of [3] (figure 5). 

Figure 5: The two spiral tilings possible with 60° concave hexagons.
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The patches of tiles around the central vertex, six in the 3-armed example, eighteen in the 6-armed
example, observe the vertex restrictions, and can be seen as Euclidean analogues of some symmetrical
patches that occur in spherical tilings. The straight sections of the spiral paths, however, do not fit on the
dual (6.3.6.3) tiling, and it is not possible to identify vertices as either 3- or 6-valent. The pairs of tiles at
the corners of the spiral paths, where there is a 60° turn, are the only neighbours that preserve vertex type
in this way.

Edge-deformation

The tiling patterns of M.C.Escher are all periodic, or derived from periodic drawings [4] (obviously apart
from those that involve no element of symmetry at all and the spherical examples), and the standard
methods of construction rely on periodicity to ensure that complicated shapes will fit together properly.
Inspection of the spiral tilings in [1] suggests that the usual techniques of edge-deformation will not work
with them, since edges meet copies of many other edges, which in turn meet copies of many edges, so
that there is no consistent way to deform the edges without generating a large number of differently
shaped tiles. There are some circumstances. however, in which spiral tilings can form the basis of Escher-
like patterns with only two shapes of tile.
If an edge is a straight line segment it has two lines of  (local) symmetry, itself and its perpendicular
bisector (and, of course, together they generate a rotational symmetry of order 2). The symmetry can be
broken by losing either line of symmetry, or both. Breaking the symmetry along the line of an edge, for
example by the edge becoming a concave or a convex circular arc, is considered in [5]. Figure 6 shows a
modification of the 3-armed spiral in figure 5 with edges that are all circular arcs.

Figure 6: A modified version
of the 3-armed spiral in
figure 5, having edges that
are circular arcs.

Such local symmetry-breaking of the edges of a tile derived from a regular polygon is possible only when
the tiling does not rely on special circumstances, for example the tile having only one concave vertex (see
[5] for details). The 6-armed spiral in figure 5, and the periodic tilings in figures 3 and 4 depend on
particular properties of hexagons, so there is no equivalent edge-deformation that preserves the
monohedral tilings.
If edges are replaced by a line of arbitrary shape we need to consider its orientation between vertices as
well as its orientation between faces (concave/convex in figure 6, for example). The local symmetry of
the edges in a perpendicular line could, in principle, be broken in tilings such as those in figures 3 and 4,
where there is a consistency in the way vertices are arranged. For example edges could be labelled with
arrows directed from 3-valent vertices to 6-valent vertices.
Figure 7 shows the 3-armed spiral of figure 5 with the edges replaced by arbitrary curves. Two shapes of
tile are needed because there is no way to direct the edges between vertices in a consistent way. Notice
that the shapes of tile alternate along the spiral path, except at the corners, where there are pairs of the
same shape, as expected from the earlier observation about vertex type in spiral tilings. In fact spiral
tilings of this type exist for all orders of rotational symmetry, since the "regular" concave hexagons that
consist of two 60° rhombi can be transformed into non-"regular" concave hexagons that consist of two
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different rhombi, that will still tile an infinite wedge that can form the fundamental domain of some
rotational symmetry. Figure 7 also shows a 4-armed spiral, previously described in [1], with edges
substituted by the same arbitrary curve. Tiles of the same shape form v-shaped zones, and the structure is
closely related to the way this 4-armed spiral is coloured in [6].

Figure 7: A modified version of the 3-armed spiral in figure 5, and an analogous 4-armed spiral.

While one of the tile shapes, especially in the 3-armed case, could make quite a convincing bird, the other
does not suggest any realistic form, however stylized. In the case of the 60° concave hexagon it is
possible to arrange the curved edges so that they start and finish with straight sections that are coincident
in some parts of the tile boundary (figure 8). 

Figure 8: An alternative version of the 3-armed spiral.

This change converts the "awkward" tile into quite a reasonable bird, and the bird tile into a more-or-less
dog shape (figure 9). The problem with these substitutions is that the same shape must be substituted for
every edge (although in different orientations) so that there needs to be a compromise: what produces a
better shape at one place makes a worse one at another. The dogs in figure 9, for example, do not bear
close scrutiny, although the birds (doves maybe?) are reasonably convincing.
In a tiling such as that of figure 6 the concave edge of one tile coincides with the convex edge of its
neighbour. This is the same as the relationship between directed edges if they are considered in an
intrinsic way, i.e. clockwise or anticlockwise around the tile. A directed edge in a tiling is clockwise
around one of its tiles and anticlockwise around the other. This observation suggests another kind of
edge-deformation, where the orientation of an edge is either clockwise and concave, or anticlockwise and
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convex. A consequence is that all the edges in the tiling are related by direct isometries, and there are no
mirror images.
Figure 11 shows an example of this type of edge-deformation applied to the tilings in figure 5. The edges
are directed in the same way as those in figure 7 (alternately), and this determines their orientation with
respect to faces ("concave" or "convex"). Again there are two shapes of tile, for the same reason as
before. Since the central patch of the 6-armed spiral tiling can be derived from the dual (6.3.6.3) tiling,
and the rest of the tiling consists of chevron elements, they are consistent with it.

Figure 9: Figure 8 with designs added to the tiles, and coloured to show the spirals.

Figure 10: Interchanging tile shapes still gives a consistent tiling.

In general spiral tilings of the type described in [1] require mirror-image copies of tiles, but if all the
edges are deformed so that they are related by direct isometries, mirror image copies will not fit. In this
case four different shapes of tile are needed: a pair where corresponding edges are rotated by 180° with
respect to each other, and a pair based on the mirror image but with edges that are direct copies from the
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first pair, again where corresponding edges are rotated by 180° with respect to each other. The 3-armed
spiral in figure 11 is a special case, because it is based on "regular" concave hexagons that have mirror
symmetry, so the two pairs are the same.
The same idea can be apppied to the tiling illustrated in figure 6. Edges that are some random shape are
directed according to whether the the circular arc is concave or convex. This time in general two shapes
of tile are sufficient, and figure 12 is equivalent to figure 7, but with tiles related by direct isometries
only.

Figure 11: Modified versions of the spiral tilings in figure 5.

Figure 12: A different edge-deformation of the tilings in figure 7.

Hyperbolic Tilings

The tilings (n.3.n.3) lie in the hyperbolic plane if n>6, and once again tilings of concave hexagons can be
produced by removing edges from the dual tilings. As with spherical geometry the size of polygons
depends on the sum of their internal angles, and a problem with images of these tilings, which is worse
for higher values of n, is that most of the interesting structure gets pushed to the edges, whichever
projection is used.
When n=7, the image is not too distorted, and Douglas Dunham has presented a tiling of butterflies that
indicates how the tiles might look, although he uses edge-deformations that are less restricted than the
ones needed for spiral tilings [7]. In this case the angles of the concave hexagons are incommensurable,
so that there is a distinction between 3-valent and 7-valent vertices in any tiling. Commensurable angles
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occur whenever n is divisible by 3, so the smallest value in the hyperbolic plane is 9. Analogues of the
Euclidean 3-armed spiral should be possible, although extra tiles must be fitted into the equivalent of the
rows of chevrons. When n=12 two tiles will fit into the concave angle, and it seems that some kind of
branching spiral tiling might be possible. Even when n=9 projections of  hyperbolic tilings are pushed
quite far to the perimeter, so it is likely that images of these tilings will be quite disappointing.
Not a lot of software exists for investigating hyperbolic tilings, and what is available is designed around
full symmetry, typically isohedral tilings. The spiral type of tilings have a single centre of symmetry, and
they are not easily investigated. The best strategy seems to involve colouring tilings of triangles manually.
Very little has been attempted, and there is much to be discovered, but the results are unlikely to lead to
striking images for the reasons already discussed.

Conclusion and Further Possibilities

Tilings of concave hexagons exist in spherical, Euclidean and hyperbolic geometries, and they provide a
range of decorative possibilities. The technique of edge-deformation has been used in all three geometries
by Escher [4], and it can be applied in these examples. Grünbaum and Shephard's classification of
isohedral tilings [8] can be used to find possibilities in the Euclidean plane that can be produced by
deleting edges from IH30-37.
There are more constraints on edge-deformations to ensure they will work with spiral tilings of concave
hexagons. In particular every edge must be the same shape. Some possibilities have been described, and
they illustrate aspects of structure that are not apparent in the examples previously described in [3] that
have edges that are straight lines. There are related tilings described in [5], with more illustrated in the
extended online version [9], to which the technique of edge-deformation could be applied, providing
further decorative possibilities, and maybe additional insight into their structures.
All of the tiles considered are compounds of two rhombi, so they have special properties, being zonogons.
There are other classical tilings and polyhedra that have quadrilateral faces that are not rhombi. It is
unlikely that they will provide such a rich source of possibilities, but some other tilings of concave
hexagons can be generated by deleting edges from them, with properties yet to be investigated. 
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