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Abstract

A number of software packages allow us to stitchetber photos to capture the entire viewable sphére

represent the viewable sphere in interesting weugs,introduce a new way to define projections (amdphic

mappings from the sphere to the plane) using &etlammguage similar to Logo. These projections loarprinted,
cut out and assembled into photographic equivaleht§ermespheres. Further, this new method fornigji

projections is versatile enough to allow artisticlanathematical explorations and as such, the ¢tiofes can be
interesting in their own right (i.e., without beingnstructed back into spheres).

1 Motivation

Image stitching software makes it easier for udersreate larger, seamless images from photos.
Panoramas that capture the entire viewable splarde stitched together, but how does one represent
display, and share them? To display these pansrama flat computer screen or on paper, we need a
mapping from the sphere to the plane. In cartdgrathese mappings are referred tgegectionsand

all projections will introduce some sort of distort. Despite this, projecting the visible spher¢oatie
plane has been undertaken by photographers andemmaticians alike, and conformal mappings
(mappings with no local distortions) play a bigerdb]. But perhaps a more natural medium for
representing panoramas would be the photographivagnt of aTermespher§g]. Dick Termes painted
spherical representations of the viewable spherthaorather than looking outward from the obsésver
viewpoint, the observer looks inward to the sceme tbe surface of the sphere. If a spherical
representation is chosen, then the photographetdgm would then become one of manufacturability.

A common method for creating globes by gluing thaper strips calledoresonto a sphere can
result in creases and wrinkles. More gores reduea@imount creases but make the task of assembly mor
finicky. Another solution is to include featuresirako a dressmaker’darts where a thin triangle of
material is removed and the edges are broughthtegét shape the sphere. Many commercial globes us
this approach. Towards creating complex projectismsh as gores with darts, this paper describes a
versatile approach to designing projections thatsaitable for printing and assembling back intioesps.

The problem of covering a sphere with paper willfémiliar to those who have seen the work by
Demaineet al.[4]. Their solution uses the same fundamentalharism as the one presented here (i.e.,
the taut pathsin their terminology are calledkeletonshere). While they discuss metrics for area,
perimeter, and tiling the plane, this paper intmefithe new concepts of a) a turtle language for th
purpose of designing projections more easily b)rigaa disconnected set of taut line segments oasf
on mapping the interior imagery and d) an exploratif some different families of projections.
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This paper is organized as follows: Section 2 mhtices the concept of skeletons and how they map
the sphere to a plane while Section 3 describesvi®wan use a turtle language to define thesetsksle
Section 4 walks through an example. Section 5 dsEsisome tips on implementation. Finally, Sediion
displays some projections created with the new atkth

2 Mapping the Sphereto the Plane

In keeping with the idea that we intend to pastegtanar projection back onto a sphere, it helps to
think of some lines and points on a ball where e @r tack pieces of paper. And now, imagineipgl!
the unglued portions of paper taut and down orgdotlil. In this scenario, the paper is the plarntae
ball is the sphere of course. We call the setn&f $egments and points that correspond to thetbkie
skeleton of the projection.

The method for mapping the sphere to the planerbesanore apparent when we realize that this
skeleton exists as a set of line segments on thers@nd a corresponding set on the plane. Weaetl
to establish how to map the non-skeleton pointhefsphere (mimicking pulling the unglued portidn o
the paper taut). But once we do so, we can defiogctions by specifying a skeleton as a setra li
segments on the sphere, and a corresponding ke¢ segments with the same lengths on the plane.

Given some line segments on the sphere, some digments on the plane, and given an arbitrary
point on the sphere, the task is to find a pointhenplane in the same relative position and disda the
segments on the plane. We define the mapping fir $keleton and non-skeleton points below. In this
paper, distance on the sphere refers to greaediistance (i.e., the distance along the surface).

Definition. GivenS,a set of line segments on a sphere, Sirrdcorresponding set of line segments of the
same lengths on the plane, we define a funddenthat maps the points on a sphere to the planép Le
be a point on the sphere. Let segmalilS be the segment neargst with corresponding segment
ab'l0S. If p lies onab, then we definds o(p) as the poinp’ on ab’ such thatgp|=g'p’|. Otherwisep
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Figure 1: Mapping a point p on the sphere to a poihtp the plane based on the nearest
segment to p and its corresponding segment onléme p (a) depicts when p is closest to an
endpoint of ab, (b) depicts when it is closest tma-endpoint
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does not lie oab. So letq be the point omb nearest t@ (without loss of generalityg#a). Then letq’ be
the corresponding point aib’ such thatdg=jp’'q’|. We define the functiofy «(p) as the poinp’ on the

plane, such thaflagp=0a'q'p’ and pg=p'q|.

The above function is not well defined if |ab|=8,,iin the degenerate case where the segmerstis ju
a point, because the required angle is not defiHeskever, we can applfig s to skeletons with points if
we keep a sense of direction with each skeletontpoi

In our intuitive picture of gluing pieces of pagera ball, we left out the details of what shape th
pieces of paper will be. The definition fafs defines the paper shapes when it requires that ugt use
the nearest segment to map our points. Thus therepis divided neatly intd/oronoi regions
(neighborhoods of the closest points) around eimehdegment. And hence the shapes of the pieces of
paper that get glued to the ball are the shapeshe$e Voronoi regions, mapped around their
corresponding skeleton line segments on the plane.

3 Defining a Skeleton with a Turtle Language

The previous section defined a mapping that usgisem skeleton to map the sphere to the plane. To
define the skeleton itself, we can make use ofdiwecept of a turtle language. This simplifies the
definition of the skeleton line segments and alacgs the skeleton on the plane in a logical asammnt.

Turtle languages such as Logo are graphic progragitainguages that use commands to move a
“turtle” around on the screen [1]. The turtle Bgsen which draws a line along its path. In otuagion
we have two spaces, the plane and the spherekéarsense then to have two turtles, a sphere-ante
a plane-turtle, which simultaneously obey the saatef instructions.

The list of the primitives that we use is in Taltle Turtle language commands are usually simple
primitives such as "pen up", "move forward 10", dpeén down" however our set of commands use
move-toandline-to commands to accomplish the same thing. The usié&l in the table are chosen for
practical purposes; a line segment measurimgdians on the sphere corresponds to a line segohen
lengthn pixels on the plane.

Table 1 Commands in our turtle language

R x Rotate in placexz radians counter-clockwise

M x Move xxz radians on the sphergxn pixels on the plane. No segment| is
created

L x Create a line segment forwaxetz radians on the spherexn pixels on the
plane.

Defining the skeleton with a turtle language theyvias the benefit of arranging the skeleton on the
plane in the right position and at the right dis@nsuch that the mapped Voronoi regions are just
touching and the imagery within adjacent regiordigned.

Since the regions are well aligned by this methaekigning a skeleton solely in “sphere-space”
usually results in pleasing results on the planeweVer, it is still possible to have a mapping veher
different points on a sphere get mapped to the gasition on the plane! (An exercise for the reade
to peel a mandarin orange in one piece such thahvlattened, the rind overlaps itself.) In preeti
such situations are rare and minor enough to igrBueif necessary, one could add &h 2" instruction
which returns the sphere pointer to its originaippon, but moves the plane pointer [@ixels away.
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4 TheVolleyball Projection (A Demonstration)

Let us now illustrate the process of mapping theesp to the plane based on the design of a volleyba
panels. Instead of a panorama, we use a map @fdhé for illustration purposes since it is farailj and
it shows up well in this medium. The sphere-tustirts out in Banff, Alberta, Canada and facet eas

The projection process starts by instructing theesp-turtle to mark the middles of the leather fmne

See Figure 2(a). For instance, the specific tumd&uctions for three adjacent panels on a side a

M -1/6; L 1/3; M -1/6; R 1/2; M 1/6; R -1/2;

M -1/6; L 1/3; M -1/6; R 1/2; M -1/3; R -1/2;

M -1/6; L 1/3; M -1/6; R 1/2; M 1/6; R -1/2;
The sphere-turtle is moved to the other five sétthee panels and the above sequence is repeated.
Simultaneously, the plane-turtle follows along andomatically creates an organized layout. See also

Figure 2(a).

The drawn line segments of the turtles’ path crelbgetwo skeletons used for the mapping, one
skeleton on the sphere, and one skeleton on the.pBee Figure 2(b).

The points of the sphere are thus arranged intoN@regions around the skeleton’s line segments,
Figure 2(c). Finally, usings s the points of each Voronoi region are mapped atdbe corresponding
line segments on the plane to create the finakybHll projection. See also Figure 2(c).

Figure 2: (a) A single turtle program directs two turtles to drgaths, one on a sphere and one on a
plane. (b) Two skeletons (sets of line segmengs)raus defined. (c) The points nearest to eaeh lin
segment on the sphere (Voronoi regions) are mapp#te corresponding segment on the plane.

5 Implementation

The preceding section demonstrates some importartepts of our skeleton method but does not serve
well as a guide to implementing an algorithm. €ader an image, we might start with the position of
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each pixelp’ on the plane and then calculate the ppionh the sphere to render. However, the function
fs.s maps points in the opposite direction; we wouldchéo implement its inverse. And yé&§s hasno
inverse in the rare cases when it maps two points sphere to the same point on the plane. Our
implementation gets around this technicality bydlly ignoring it. (If necessary though, one coufe

the “M 2” work around described at the end of Section 3.)

The pseudocode below may help those wishing teewihieir own software. We define functigas
in the same way thdg s is defined in Section 2, but with the roles of Hphere and the plane reversed.
Thus whenfs g(p)=p’ is single-valued, then yegg p’)=p, but only whenp is in the proper Voronoi
region on the sphere. The pseudo-code below agpligand then performs this check.

The input is a skeleton and a color for each poion the sphere
for each pixep’ on the plane, do:
s’ «— nearest segment on the plan@'to
S« segment on sphere corresponding’to
p < 0ss(p) (the point on the sphere in the same relatostjon tos asp’is tos')
if the nearest segment gt s then:
output a blank pixel
otherwise:
output the color g

Figure 3: Pseudocode for one possible implementation

Our implementation is a Win32 console applicatiaitten in C, with no graphical user interface.
Its running time has not been formally analyzeddxerience shows a strong dependency on the number
of segments in the skeleton. For instance, itdat®ut five seconds to render a 2000x2000 image of
two-segment skeleton, but almost 30 minutes fd@GsEgment skeleton of the same size.

6 Examples
We finish by looking at some of the projectionsa@uplished with our new method.
6.1 Simple Projections Even very short turtle programs can generate sobaeeisting results. A single
point skeleton specified by.“0 " creates a projection known as an azimuthal eqtadt projection. See

Figure 4. A skeleton consisting of a great ciislspecified by £ 2 ” and produces a well known and
common projection known as an equirectangular ptige. See Figure 5.

Figure 4: An azimuthal equidistant Figure5: An equirectangular projection, with Banff at
projection centred on Banff. the middle of the left edge.
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The previous two projections are notable since tedp characterize the interior of any projections
produced with our skeleton method. Mathematicadlgch projection is a piecewise mix of azimuthal
equidistant projections and equirectangular pr@eastdepending upon the two cases shown in Figure 1

6.2 Polyhedra. Skeletons consisting of the face centres of polsdngurojected onto the sphere can
produce interesting projections. Such projecticmsemble unfolded and flattened polyhedra, although
not exactly (for instance, the edges of the fagescarved). The pentagonal hexecontahedron based
projection in Figure 6 is my personal favourite.

6.3 Sport Balls. We have already seen the volleyball. And we hdneady discussed polyhedra, but the
soccerball needs a special mention. In this casepolyhedron approach mentioned in Section 6e5do
not create regular hexagons: the distance betwserface centres of two neighbouring hexagons is
greater than between a hexagon and a pentagorthasithe hexagons’ Voronoi regions are not regular.
A new feature was added to our turtle languageue @ weighting to each skeleton segment. By sgali
up the distance to each pentagon centre apprdgriate achieve our soccerball projection in Figdre

Figure 6: A pentagonal Figure 7: A soccerball projection Figure8: A baseball projection
hexecontahedron projection

As for baseballs, John Conway once conjectured firmodefinitions of "the correct baseball curve”
will give the same answer unless their equivaleiscebvious from the start” [3]. The set of turtle
instructions L 2x; M 1-x; R 1/2; M —x; L 2x; " with x=0.739726 throws another definition
into the mix. See Figure 8. The valuexofvas chosen such that the leather flats 3he ihches wide at
the “waist” for a baseball with a circumferenceddf, inches, according to measured values.

6.4 Trail of Small Segments. Lloyd Burchill of Flaming Pear Software created mjgction which
mimics the peeling of an apple [2]. We can accashpthe same effect by specifying a trail of one
hundred or so line segments which spiral from tpeto the bottom of the “apple”. See Figure 9.

6.5 Gores. The standard layout of gores can be specified ailine segment from pole to pole for each
gore. This is well explored in [4]. Dart featusee created by adding gaps to the meridians (€igQ}.
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(b)
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Figure 9: A rind projection, after a projection by  Figure 10: The skeleton to create gores with
Lloyd Burchill darts shown on (a) the sphere and (b) the plane.

A dart is shown inset.

6.6 Photographs. Returning to the original reason for this wofkgure 11 shows a constructed
photographic Termesphere using the gore designrstmwigure 10. The paper is cut and glued over a

3” plastic ball and used as a Christmas tree orname

We finish by showing how our new projections
can be used as a compositional element for panstam
Figure 12 shows four more projection designs.
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Figure 12: “Twin’s Eye View"(a) uses a three-gore projectios a compositional element.
“Meandering Meridians”(b) and “Snowflakes on Snoakes”(c) explore the potential of the turtle
method with less emphasis on their panoramic cantelmder the Maple Tree”(d) is produced by the

turtle instruction ‘L 1",
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