Vertices: | 7 (2[6] + 2[6] + 2[6] + 1[6]) |
Faces: | 14 (triangles: 2 isosceles right + 2 other isosceles + 2 right + 2 acute + 2 * 3 obtuse) |
Edges: | 21 (9 different lengths) |
Symmetry: | 2-fold Cyclic (C2) |
Dual Toroid: | Szilassi Polyhedron |
(values below based on the description from "On Three Classes of Regular Toroids", 2004, by Lajos Szilassi) |
Minimum Dihedral Angle: | ≈15.43708483453 degrees |
Maximum Dihedral Angle: | ≈296.294203369 degrees |
Edge 1 (2): | 3*sqrt(11-4*sqrt(2)) | ≈6.9345736534100334151 |
Edge 2 (1): | 6*sqrt(2) | ≈8.4852813742385702928 |
Edge 3 (2): | 3*sqrt(19-4*sqrt(2)) | ≈10.958481270439283743 |
Edge 4 (2): | 12 |
Edge 5 (4): | 3*sqrt(11+4*sqrt(2)) | ≈12.2438428708241523952 |
Edge 6 (2): | 3*sqrt(35-4*sqrt(2)) | ≈16.250794188425640702 |
Edge 7 (5): | 12*sqrt(2) | ≈16.970562748477140586 |
Edge 8 (2): | 12*sqrt(3) | ≈20.784609690826527522 |
Edge 9 (1): | 24 |
Volume: | 72*(11-2*sqrt(2)) | ≈588.35324701827431297 |
References: | [1] | On Some Regular Toroids (Lajos Szilassi) |
| [2] | Lajos Szilassi, On Three Classes of Regular Toroids, 3rd International Conference APLIMAT 2004. |
| [3] | Ákos Császár, A polyhedron without diagonals, Acta Sci. Math. Universitatis Szegediensis 13 (1949), 140-142. |
|