Regular Higher Genus Toroids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Heptagonal Dodecahedron (type A) (form 1) (Jörg Wills' version)
form 1
Vertices:  28  (28[3])
Faces:12  ({3 * 4} nonconvex heptagons)
Edges:42  (14 different lengths)
Symmetry:  3-fold Cyclic  (C3)
(values below based on integer coordinates)
Edge 1 (3):  70
Edge 2 (3):  9*sqrt(85)    ≈82.975900115635985790
Edge 3 (3):  81*sqrt(2)    ≈114.551298552220698953
Edge 4 (3):  14*sqrt(73)    ≈119.6160524344454363502
Edge 5 (3):  126
Edge 6 (3):  3*sqrt(7905)    ≈266.73020076474279893
Edge 7 (3):  273
Edge 8 (3):  126*sqrt(5)    ≈281.744565164973501748
Edge 9 (3):  308
Edge 10 (3):  231*sqrt(2)    ≈326.68333290818495627
Edge 11 (3):  147*sqrt(5)    ≈328.70199269246908537
Edge 12 (3):  378
Edge 13 (3):  420
Edge 14 (3):  189*sqrt(5)    ≈422.61684774746025262
Volume:57491406  [EXACT]


References:[1]Jörg M. Wills, A locally regular heptagon-dodecahedron embedded in
3-space, European Journal of Combinatorics 29(8) (November 2008),
1952-1955.