Vertices: | 7 (2[6] + 2[6] + 2[6] + 1[6]) |
Faces: | 14 (triangles: 2 equilateral + 2 * 6 obtuse) |
Edges: | 21 (9 different lengths) |
Symmetry: | 2-fold Cyclic (C2) |
Dual Toroid: | Szilassi Polyhedron |
(values below based on the description from "On Three Classes of Regular Toroids", 2004, by Lajos Szilassi) |
Minimum Dihedral Angle: | ≈21.801409486 degrees |
Maximum Dihedral Angle: | ≈306.618274831 degrees |
Edge 1 (2): | 5*sqrt(2) | ≈7.0710678118654752440 |
Edge 2 (1): | 6*sqrt(2) | ≈8.4852813742385702928 |
Edge 3 (2): | sqrt(122) | ≈11.045361017187260774 |
Edge 4 (2): | 4*sqrt(11) | ≈13.266499161421599396 |
Edge 5 (2): | sqrt(218) | ≈14.764823060233400576 |
Edge 6 (2): | sqrt(266) | ≈16.309506430300090476 |
Edge 7 (2): | 4*sqrt(17) | ≈16.492422502470642199 |
Edge 8 (2): | sqrt(362) | ≈19.0262975904404480646 |
Edge 9 (6): | 24 |
Volume: | 816*sqrt(2) | ≈1153.9982668964455598 |
References: | [1] | On Some Regular Toroids (Lajos Szilassi) |
| [2] | Lajos Szilassi, On Three Classes of Regular Toroids, 3rd International Conference APLIMAT 2004. |
| [3] | Ákos Császár, A polyhedron without diagonals, Acta Sci. Math. Universitatis Szegediensis 13 (1949), 140-142. |
|