{3,6} Genus-1 Toroids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Anti-Heptagonal Iris Toroid
Vertices:  14  (14[6])
Faces:28  (14 equilateral triangles + 14 obtuse triangles)
Edges:42  (28 short + 7 medium + 7 long)
Symmetry:  7-fold Dihedral  (D7)
Dihedral Angle 1 (7):  acos(root[29*(x^3)-5*(x^2)-29*x+13])    
    = acos((44*cos(pi/7)-20*cos(2*pi/7)-9)/29)    
≈51.196644381 degrees
Dihedral Angle 2 (14):  acos(sqrt(root[783*(x^3)+27*(x^2)-915*x+169]))    
    = acos(sqrt((136*cos(pi/7)-104*cos(2*pi/7)-41)/87))    
≈64.024996468 degrees
Dihedral Angle 3 (14):  acos(-root[27*(x^3)+9*(x^2)-27*x-1])    
    = acos(-(4*cos(pi/7)-1)/3)    
≈150.222262672 degrees
Dihedral Angle 4 (7):  acos(root[29*(x^3)+7*(x^2)-21*x-7])    
    = acos((1+8*cos(pi/7)+28*cos(2*pi/7))/29)    
≈332.2534962499 degrees
(values below based on short edge length = 1)
Short Edge (28):  1
Medium Edge (7):  sqrt(root[(x^3)-4*(x^2)+3*x+1])    
    = sqrt(1+2*cos(pi/7))    
≈1.67389896224498515951
Long Edge (7):  root[(x^3)-2*(x^2)-x+1]    
    = 1/(2*sin(pi/14))    
≈2.2469796037174670611
Volume:sqrt(root[2985984*(x^3)-4064256*(x^2)    
    -3803184*x+117649])    
    = 7*sqrt(cos(pi/7)+1/(8*sin(pi/14)))/6    
≈1.4109982151413774978