{3,6} Genus-1 Toroids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Császár Polyhedron (version 5)
version 5
Vertices:  7  (2[6] + 2[6] + 2[6] + 1[6])
Faces:14  (triangles: 2 equilateral + 2 * 6 obtuse)
Edges:21  (9 different lengths)
Symmetry:  2-fold Cyclic  (C2)
Dual Toroid:  Szilassi Polyhedron
(values below based on the description from "On Three Classes of Regular Toroids", 2004, by Lajos Szilassi)
Minimum Dihedral Angle:  ≈21.801409486 degrees
Maximum Dihedral Angle:  ≈306.618274831 degrees
Edge 1 (2):  5*sqrt(2)    ≈7.0710678118654752440
Edge 2 (1):  6*sqrt(2)    ≈8.4852813742385702928
Edge 3 (2):  sqrt(122)    ≈11.045361017187260774
Edge 4 (2):  4*sqrt(11)    ≈13.266499161421599396
Edge 5 (2):  sqrt(218)    ≈14.764823060233400576
Edge 6 (2):  sqrt(266)    ≈16.309506430300090476
Edge 7 (2):  4*sqrt(17)    ≈16.492422502470642199
Edge 8 (2):  sqrt(362)    ≈19.0262975904404480646
Edge 9 (6):  24
Volume:816*sqrt(2)    ≈1153.9982668964455598


References:[1]On Some Regular Toroids (Lajos Szilassi)
[2]Lajos Szilassi, On Three Classes of Regular Toroids,
3rd International Conference APLIMAT 2004.
[3]Ákos Császár, A polyhedron without diagonals,
Acta Sci. Math. Universitatis Szegediensis 13 (1949), 140-142.