{3,6} Genus-1 Toroids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Császár Polyhedron (version 2)
version 2
Vertices:  7  (2[6] + 2[6] + 2[6] + 1[6])
Faces:14  (triangles: 2 isosceles right + 2 * 2 other isosceles + 2 acute + 2 * 3 obtuse)
Edges:21  (9 different lengths)
Symmetry:  2-fold Cyclic  (C2)
Dual Toroid:  Szilassi Polyhedron
(values below based on the description from "On Three Classes of Regular Toroids", 2004, by Lajos Szilassi)
Minimum Dihedral Angle:  ≈35.905157448 degrees
Maximum Dihedral Angle:  ≈343.739795292 degrees
Edge 1 (1):  2*sqrt(5)    ≈4.4721359549995793928
Edge 2 (4):  sqrt(86)    ≈9.27361849549570375252
Edge 3 (2):  5*sqrt(6)    ≈12.247448713915890491
Edge 4 (1):  16
Edge 5 (6):  8*sqrt(5)    ≈17.888543819998317571
Edge 6 (2):  sqrt(2*(183-4*sqrt(15)))    ≈18.30344593868435105496
Edge 7 (2):  sqrt(2*(183+4*sqrt(15)))    ≈19.924453989247969730
Edge 8 (2):  8*sqrt(10)    ≈25.298221281347034656
Edge 9 (1):  8*sqrt(15)    ≈30.983866769659335081
Volume:16*(21*sqrt(15)-2)    ≈1269.3224043256920734


References:[1]On Some Regular Toroids (Lajos Szilassi)
[2]Lajos Szilassi, On Three Classes of Regular Toroids,
3rd International Conference APLIMAT 2004.
[3]Ákos Császár, A polyhedron without diagonals,
Acta Sci. Math. Universitatis Szegediensis 13 (1949), 140-142.