Vertices: | 14 (14[6]) |
Faces: | 28 (14 equilateral triangles + 14 obtuse triangles) |
Edges: | 42 (28 short + 7 medium + 7 long) |
Symmetry: | 7-fold Dihedral (D7) |
Dihedral Angle 1 (7): | acos(root[29*(x^3)-5*(x^2)-29*x+13]) = acos((44*cos(pi/7)-20*cos(2*pi/7)-9)/29) | ≈51.196644381 degrees |
Dihedral Angle 2 (14): | acos(sqrt(root[783*(x^3)+27*(x^2)-915*x+169])) = acos(sqrt((136*cos(pi/7)-104*cos(2*pi/7)-41)/87)) | ≈64.024996468 degrees |
Dihedral Angle 3 (14): | acos(-root[27*(x^3)+9*(x^2)-27*x-1]) = acos(-(4*cos(pi/7)-1)/3) | ≈150.222262672 degrees |
Dihedral Angle 4 (7): | acos(root[29*(x^3)+7*(x^2)-21*x-7]) = acos((1+8*cos(pi/7)+28*cos(2*pi/7))/29) | ≈332.2534962499 degrees |
(values below based on short edge length = 1) |
Short Edge (28): | 1 |
Medium Edge (7): | sqrt(root[(x^3)-4*(x^2)+3*x+1]) = sqrt(1+2*cos(pi/7)) | ≈1.67389896224498515951 |
Long Edge (7): | root[(x^3)-2*(x^2)-x+1] = 1/(2*sin(pi/14)) | ≈2.2469796037174670611 |
Volume: | sqrt(root[2985984*(x^3)-4064256*(x^2) -3803184*x+117649]) = 7*sqrt(cos(pi/7)+1/(8*sin(pi/14)))/6 | ≈1.4109982151413774978 |