{6,3} Genus-1 Toroids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Szilassi Polyhedron (version 2)
version 2
Vertices:  14  (2[3] + 2[3] + 2[3] + 2[3] + 2[3] + 2[3] + 2[3])
Faces:7  (1 convex hexagon + {2 * 3} nonconvex hexagons)
Edges:21  (11 different lengths)
Symmetry:  2-fold Cyclic  (C2)
Dual Toroid:  Császár Polyhedron
Edge 1 (2):  2
Edge 2 (2):  2*sqrt(13)/3    ≈2.4037008503093261954
Edge 3 (2):  5*sqrt(253)/12    ≈6.6274890502445276474
Edge 4 (2):  3*sqrt(101)/4    ≈7.5374067158406677027
Edge 5 (2):  2*sqrt(21)    ≈9.1651513899116800132
Edge 6 (1):  8*sqrt(13)/3    ≈9.6148034012373047817
Edge 7 (2):  2*sqrt(349)/3    ≈12.454361128179602899
Edge 8 (2):  44/3    ≈14.666666666666666667
Edge 9 (2):  4*sqrt(29)    ≈21.540659228538016125003
Edge 10 (2):  24
Edge 11 (2):  21*sqrt(21)/4    ≈24.0585223985181600346
Volume:7976/9    ≈886.22222222222222222


References:[1]On Some Regular Toroids (Lajos Szilassi)
[2]Lajos Szilassi, On Three Classes of Regular Toroids,
3rd International Conference APLIMAT 2004.
[3]the Szilassi polyhedron (Tom Ace)
[4]The Parametrized Szilassi Polyhedron