Vertices: | 7 (2[6] + 2[6] + 2[6] + 1[6]) |
Faces: | 14 (triangles: 2 isosceles right + 2 * 2 other isosceles + 2 acute + 2 * 3 obtuse) |
Edges: | 21 (9 different lengths) |
Symmetry: | 2-fold Cyclic (C2) |
Dual Toroid: | Szilassi Polyhedron |
(values below based on the description from "On Three Classes of Regular Toroids", 2004, by Lajos Szilassi) |
Minimum Dihedral Angle: | ≈35.905157448 degrees |
Maximum Dihedral Angle: | ≈343.739795292 degrees |
Edge 1 (1): | 2*sqrt(5) | ≈4.4721359549995793928 |
Edge 2 (4): | sqrt(86) | ≈9.27361849549570375252 |
Edge 3 (2): | 5*sqrt(6) | ≈12.247448713915890491 |
Edge 4 (1): | 16 |
Edge 5 (6): | 8*sqrt(5) | ≈17.888543819998317571 |
Edge 6 (2): | sqrt(2*(183-4*sqrt(15))) | ≈18.30344593868435105496 |
Edge 7 (2): | sqrt(2*(183+4*sqrt(15))) | ≈19.924453989247969730 |
Edge 8 (2): | 8*sqrt(10) | ≈25.298221281347034656 |
Edge 9 (1): | 8*sqrt(15) | ≈30.983866769659335081 |
Volume: | 16*(21*sqrt(15)-2) | ≈1269.3224043256920734 |
References: | [1] | On Some Regular Toroids (Lajos Szilassi) |
| [2] | Lajos Szilassi, On Three Classes of Regular Toroids, 3rd International Conference APLIMAT 2004. |
| [3] | Ákos Császár, A polyhedron without diagonals, Acta Sci. Math. Universitatis Szegediensis 13 (1949), 140-142. |
|