{3,6} Genus-1 Toroids

(box: x-ray)  (F: faces)  (slider: perspective)  (image: L=rotate R=zoom)  (M: metrics)

Császár Polyhedron (version 3)
version 3
Vertices:  7  (2[6] + 2[6] + 2[6] + 1[6])
Faces:14  (triangles: 2 isosceles right + 2 other isosceles + 2 right + 2 acute + 2 * 3 obtuse)
Edges:21  (9 different lengths)
Symmetry:  2-fold Cyclic  (C2)
Dual Toroid:  Szilassi Polyhedron
(values below based on the description from "On Three Classes of Regular Toroids", 2004, by Lajos Szilassi)
Minimum Dihedral Angle:  ≈15.43708483453 degrees
Maximum Dihedral Angle:  ≈296.294203369 degrees
Edge 1 (2):  3*sqrt(11-4*sqrt(2))    ≈6.9345736534100334151
Edge 2 (1):  6*sqrt(2)    ≈8.4852813742385702928
Edge 3 (2):  3*sqrt(19-4*sqrt(2))    ≈10.958481270439283743
Edge 4 (2):  12
Edge 5 (4):  3*sqrt(11+4*sqrt(2))    ≈12.2438428708241523952
Edge 6 (2):  3*sqrt(35-4*sqrt(2))    ≈16.250794188425640702
Edge 7 (5):  12*sqrt(2)    ≈16.970562748477140586
Edge 8 (2):  12*sqrt(3)    ≈20.784609690826527522
Edge 9 (1):  24
Volume:72*(11-2*sqrt(2))    ≈588.35324701827431297


References:[1]On Some Regular Toroids (Lajos Szilassi)
[2]Lajos Szilassi, On Three Classes of Regular Toroids,
3rd International Conference APLIMAT 2004.
[3]Ákos Császár, A polyhedron without diagonals,
Acta Sci. Math. Universitatis Szegediensis 13 (1949), 140-142.