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Abstract  

  
Weaving is an invention of man, and maybe one of the most important inventions in the field of construction. There are 
many weave patterns but most weave patterns are based on just two different grids, the plain weave and the three way 
weave. The development of weaving is mainly connected to the possibilities of manufacturing. In this paper I want to 
investigate this ‘passing one thread over another’-concept from a mathematical-artistic point of view. 
 
 

1.  Introduction  
 
  

1.1.   Over and Under.  In Leonardo’s painting on the ceiling of the Sala delle Asse in the Sforza Castle in 
Milan (Figure 1) we can see different weaving patterns: the knotted ropes and the interwoven branches. Both 
can only be realized with the aid of man. Nature doesn’t weave by itself, at least not in the way Leonardo 
shows us in his painting. When we look for a definition of weaving we can find the following: weaving is 
the textile art in which two distinct sets of yarns or threads, called the warp and the filling or weft, are 
interlaced with each other to form a fabric or cloth. To define the concept of weaving in a more general way 
we could say that a weaving is a line pattern in which for each pair of adjacent crossing points on the line(s) 
the position of that line changes from ‘over’ to ‘under’ or from ‘under’ to ‘over’ (Figure 2a,b). 
 
 

 
 
Figure 1:  Leonardo da Vinci                       Figure 2a:   Lines                   Figure 2b:  Weaving  

  
1.2.   Graphs and Tilings.  Lines in a weave pattern can be lines with a start and an endpoint (Figure 2b) or 
closed loops (Figure 3). And a weave pattern can even be made with one single line (Figure 4a). When we 
project a weave pattern on the plane the resulting figure can be seen as a graph in which each vertex 
represents a crossing point of the weave pattern.  
The degree of each vertex is four, because of the two lines in the weaving pattern crossing each other. And 
therefore the projected pattern can be transformed into a tiling which can be colored with just two colors in 
such a way that adjacent tiles always have different colors (Figure 4).  This works both ways, so we can 
construct a weave pattern from any tiling that can be colored in this way and has only vertices with degree 
four. 
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Figure 3:  Closed loops.              Figure 4a:   Weaving.             Figure 4b:  Tiling. 
 
 

2.  Weave Patterns  
  

2.1.  Tilings and Weave Patterns.  When we look at the Archimedean tilings [1] we see that there are four 
tilings which can be colored in the way described above. Two of them, (4.4.4.4) and (3.6.3.6) are the 
underlying patterns of most of the weavings used in fabrics and baskets. The weaving derived from (4.4.4.4) 
is known as the plain weave (Figure 5), and the other as the three way weave (Figure 6). 
 

  
 
Figure 5a:  Tiling 4.4.4.4. Figure 5b:  Plain weave.         Figure 6a:  Tiling 3.6.3.6.   Figure 6b: Three way weave. 
  
2.2.  Closed Loops.  The third Archimedean tiling that can be colored like a checkerboard is (3.4.6.4) 
(Figure 7a). The weaving derived from this tiling is that it is a weaving with closed loops (Figure 7b). 
 

 
 
                  Figure 7a:   Tiling 3.4.6.4            Figure 7b:  Weaving with closed loops.  
 
The last one, tiling (3.3.3.3.3.3), can be colored in the right way but can not be transformed into a weaving 
pattern because the degree of each vertex is not four but six. 
 
  

3.  Transforming Patterns into Two-Color Patterns  
  

3.1.  Connecting intersection points.  Each tiling can be used to create a new tiling that can be colored as a 
checkerboard. When we add the dual pattern to an existing pattern we will get intersection points between 
both patterns. Each of those points lays on a line which is the edge of two adjacent tiles. On both tiles this 
edge is connected to exactly two other edges, on which there are also intersection points. So we have four 
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direct neighbour points for each intersection point. Connecting each intersection point to the four direct 
neighbour points will thus give us a graph in which each vertex has degree four. So we will get a tiling 
which can be colored as a checkerboard, that can be used as an underlying pattern for a weaving. In Figure 9 
you can see the result of this process applied on the Archimedean tiling (3.3.4.3.4) (Figure 8).  
This operation corresponds to the “ambo” operation that is part of  Conway Polyhedron notation [2]. 
 
 

 
 
          Figure 8a:  Tiling.                Figure 8b:   Transformed tiling.                          Figure 9:  Weave.  
 
 
3.2.  The other Archimedean Tilings.  As can be seen in Figure 10 to 13 we can derive new weave patterns 
from the other Archimedean tilings. Note that when we apply this process on tiling (3.3.3.3.3.3) or on tiling 
(6.6.6) in both cases we will get tiling (3.6.3.6), which already explained in Section 2.1. Starting with the 
tiling (4.4.4.4) brings us back to tiling (4.4.4.4) again. 
 
 

 
 
Figure 10:  (6.3.3.3.3).            Figure 11:   (3.12.12).       Figure 12:  (4.8.8).            Figure 13:   (4.6.12). 
 

 
4.  Weaving Patterns on Polyhedra 

 
  

4.1.  Rings on the Sphere.  In the group of regular and semi regular polyhedra there are, except from the 
anti prisms, five polyhedra that can be colored in a checkerboard fashion. And they all have vertices with 
degree 4. This gives us five weave patterns on the sphere as can be seen in Figure 14. 
In Japanese Temari Balls and also in Alan Holden’s Orderly Tangles [3] we can find many examples of the 
use of these basic patterns. 
But with the procedure described in section 3.1 we can also derive weave patterns from the other Platonic 
and Archimedean solids. In Figures 15 to 20 some examples are shown. In the weavings we still get closed 
loops but these lines are not laying in a cutting plane of the polyhedron as in the first five. And in some cases 
(snub cube and snub dodecahedron), the loops go around twice, crossing themselves a few times. 
The weavings shown in Figures 15 – 20 are based on the Rhombic Truncated Cuboctahedron, the Truncated 
Dodecahedron, the Rhombic Truncated Icosidodecahedron, the Snubcube and the Snubdodecahedron. 
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Figure 14:  Five spherical weaves.            Figure 15:  R.T.Cuboc.               Figure 16:  T.Icos.  
 

 
 
 Figure 17:  T.Dodec..     Figure 18:   R.T.Icosidodec.        Figure 19:  Snub Cube       Figure 20:  Snub Dodec. 
 

5.  Twist  
 

  
5.1.  Transformations.  As tilings can be used to generate weaving patterns, also weaving patterns 
themselves can be used to generate other weaving patterns. We will discuss and illustrate some of the 
possible transformations that can be used to generate new weaving patterns and also new weaving structures. 
 
 
5.2.  From lines to closed loops.  In a plain weave there are straight crossings between the lines. You can 
say that each line at each crossing point takes the second exit. If we change that, so instead of the taking the 
second exit we take the third and we do that with both lines of the crossing, we will get a twist at the 
crossing point of our weaving. The first twist (Figure 21a) will just cause a defect in the weaving. But 
applying this twist on every crossing point in the weaving will transform our line weaving into a weaving 
with closed loops (Figure 21c). Figure 22 shows the result of this transformation starting with the three way 
weave. 
 

 
 
Figure 21a:  One defect         Figure 21b:   One loop.     Figure 21c:  Loop weaving.          Figure 22:   Three way. 
 
  
5.3.  Change of Rhythm.  The next operation can be seen as a change of rhythm: instead of over-under-
over-under (notation: 1-1) we will change to over-over-under-under (notation: 2-2). To achieve this we just 
change some of the crossings from over-under to under-over. In Figure 23 you can see the result of this 
operation applied on the weaving of Figure 21c. 
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Figure 23:  Rhythm 2-2.           Figure 24a:  Rhythm 3-3.       Figure 24b:  Rhythm 4-4.           Figure 24c:  Surface.  
 
The rhythm of the weaving with the ellipses in Figure 24a is 3-3 and when we make an extra twist in each of 
the ellipses we will get the weaving of Figure 24b in which the rhythm is 4-4. 
 
5.4.  Making Surfaces.  It appeared to be possible to create a surface on the edges of the weaving of Figure 
24b like a soap-film. Whether this is due to the fact that the rhythm is even-even (4-4) or if this is possible 
with all even-even loop weavings still has to be examined. The resulting surface however is a self 
interwoven surface and as such a new weaving structure derived from a weaving pattern. In Figures 25 to 27 
a few more examples are shown of self interwoven surfaces created from twisted loop weavings. The 
starting point for Figure 25 is the three way weave. In Figure 26 the Archimedean tiling (3.4.6.4) can be 
recognized. And to construct the surface of Figure 27 one more step was needed: starting with the 
Archimedean tiling (3.4.3.3.4) we first had to use the method described in section 3.1. In the surfaces the 
lines of the twisted ellipses can now be seen as ‘twisted holes’. In my paper “Connected Holes” [4] similar 
self interwoven can be found. The difference is that shape the holes now is just a twisted closed loop and not 
a knot, which was used as the shape of the holes in the surfaces explained in “Connected Holes”. 
 

 
 
Figure 25a:  Weave.                Figure 25b: First twist.       Figure 25c:  Next twists.        Figure 25d:  Twist weave.  
 

 
 
Figure 25e:  Surface.                Figure 26a:  Weave.      Figure 26b:  Surface.               Figure 27:  Surface. 
 

6.  Weaving with Surfaces  
  

6.1.  Soap Film.  In Figure 23 we have shown a loop weave with rhythm 2-2. This is an even-even rhythm 
and also here it appeared to be possible to create surfaces on the edges using the soap-film method. However 
in this case the complete set of loops of the weaving splits up in two subsets, creating two surfaces which are 
interwoven, as can be seen in Figure 28.  
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Figure 28a:  Subset.                Figure 28b:   Soap film.      Figure 28c:  Surface.             Figure 28d:   Weaving. 
  
6.2.  Examples.  This is in fact a new class of weaving structures. Two or more surfaces can be interwoven 
when there are holes in the surfaces. The complete set of holes corresponds to a loop weave pattern. Many 
different weavings of this kind can be made but for now I just want to show some examples. 
 

 
 
Figure 29:  Square grid.       Figure 30:   Square grid.     Figure 31:  Hexagonal grid.       Figure 32:  Three layers. 
 

 
 
Figure 33:  Three layers           Figure 34:  Two layers.           Figure 35:  Two layers.         Figure 36: Four layers. 
 
 

7.  Helical Holes   
 

7.1.  Twist again.  So far we have seen that ‘twist’ is the base of some powerful operations to generate new 
weaving patterns as well as new weaving structures. Until here all the operations were applied on line or 
loop weaves. But we can also define a twist operation that can be applied on weave surfaces. In Figure 37a 
you can see a part of the weave surface that is created in Figure 28. It is a part that surrounds one hole in the 
surface. Or the part that is connected to one loop in the original weave. When we split up this part into four 
pieces (this is the number of surrounding holes) we can twist one part over 360/4 degrees. In Figure 37b you 
can see that the edge of the hole is now transformed into a non-closed line and after twisting one more part 
this line is transformed into a helix (Figure 37c). The unit we now have created can be used to create a 
surface as shown in Figure 37d. In fact such a  surface can be extended into infinity in all directions. And 
special about this surface is that it has helical holes. 
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Figure 37a: One hole.                Figure 37b:  First twist.             Figure 37c:  Helix.           Figure 37d:   Surface. 
 
  
7.2. Weaving with Helical Hole Surfaces.  Another property of these surfaces is that they can be used to 
make weaves again. We can weave two or more of these surfaces through one another. And there are also 
several ways to do this.  In Figure 38b an extra surface is added which is moved horizontally to create a 
weave that can be compared with the weave in Figure 28d. The other way of weaving is adding a copy 
which is translated in the vertical direction (Figure 39). Both operations can be combined to create a four-
layer weave with helical hole surfaces. As you can see in Figure 39d there is still space to add more layers in 
between the two layers. The number of possible layers depends on the thickness of the surface and the pitch 
of the helix. 
 

 
 
Figure 38a:  Surface             Figure 38b:   Weaving a.          Figure 39a: Surface.        Figure 39d:  Weaving b. 
 
 
7.3.  Examples. Any tiling that can be coloured as a checkerboard can be transformed into a weaving 
pattern, but only when the degree of all the vertices is four. It turns out that all such tilings also can be 
transformed into spiral hole surfaces, but now also for degrees of the vertices higher then four. In Figure 40 
we see a helical hole surface based on the Archimedean tiling (3.3.3.3.3.3), a tiling with vertex degree 6. 
Figure 40c and 40d respectively show the weaving of two and three surfaces. The helical hole surface of 
Figure 41 is based on the Archimedean tiling (3.4.3.6). 
 
 

 
 
Figure 40a:  Surface.                Figure 40b: 1 Layer.         Figure 40c: 2 Layers.           Figure 40d:  3 Layers. 
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Figure 41a:  Surface.                Figure 41b: 1 Layer.       Figure 41c:  2 Layers.            Figure 41d:  3 Layers. 
 
 

8.  Weave Grids 3D   
 

8.1.  Black/White – Left /Right.  In his article “Weaving, Mother of Tensegrity” [5] Kenneth Snelson 
writes, and he illustrates it with the picture that is copied here as Fig 42b: “Each woven interaction produces 
its rotational complement. Just as the individual crossings of filaments have their helical axes so each square 
in a plain weave has its opposite. Each cell’s neighbours are its mirror form like alternate squares on a chess 
board.” And this is exactly what is happening in the helical hole surfaces: neighbouring holes are each 
other’s mirror images. If one spiral hole is clockwise, his neighbour hole is counter clockwise. When we 
make this relation visible like in Figure 42c and 42d we can apply the soap film method again to create the 
surface shown in Figure 42e. 
 

 
 
Figure 42a:  Tiling.                Figure 42b:   Snelson.            Figure 42c:  Left-Right.               Figure 42d:   Spirals. 
 
8.2.  Black/White Tiling on Helical Hole Surfaces. One of the important discoveries Kenneth Snelson talks 
about in his article is 3D weaving. The examples he shows are based on space frames. Also helical hole 
surfaces can be used to generate 3D weaves. And this method is in a way exactly the same as the generation 
of  the weaves from the checkerboard colored tilings that we have discussed in Sections 2 and 3: as you can 
see in Figure 42f the helical hole surface can be covered with a black/white tiling by projecting the 
underlying coloring on it. And this tiling can be transformed into a weaving again. It all looks the same but 
there is one big difference: the weaving that we have created now is a 3D weaving. Each thread in the 
weaving is connected with threads at two different levels. 
 

  
 
Figure 42e:  Surface.                 Figure 42f:  Projecting.           Figure 42g:  Tiling.      Figure 42h:  3D Weaving. 
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8.3.  3D Weaves.  To make this more visible I have made two examples of these 3D weaves. The first one is 
based on the Archimedean tiling (4.4.4.4) and the second one is based on the tiling (3.6.3.6). 
 

 
 
    Figure 43:  3D weave square.       Figure 44:   3D weave hexagonal 
 
 

9.  Helical Hole Surfaces.  
 

9.1.  Black/White Tilings.  In Figures 42a – 42e we have shown that helical hole surfaces can be created 
starting with a checkerboard tiling. And in Chapter 4 we have seen that also some of the regular and semi 
regular polyhedra can be colored in a checkerboard fashion. So when we use the same steps  as in section 
8.1, but now starting with the icosidodecahedron (Figure 45), we can create the spherical helical hole surface 
shown in Figure 46. Note that this is a single surface structure. In Figure 47 we can see another example of a 
spherical helical hole surface. This one is based on the cuboctahedron. 
 

 
 
Figure 45:  Icosidodecahedron         Figure 46:  Helical Hole Surface                  Figure 47:  Base: Cuboctahedron.  
 
9.2.  Cylindrical Tilings.  Also cylinders can be covered with a black/white tiling. In Figure 48 and Figure 
50 we  can see two basically different coverings of the cylinder. In Figure 50 the covering is made in a spiral 
way. Both coverings can be used to create a helical hole surface (Figure 49 and 51). 
 

 
 
Figure 48:  Cylinder        Figure 49:  Helical Hole Surface    Figure 50:  Spiral covering      Figure 51:  Surface 
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Both the spherical and the cylindrical helical hole surface can be interwoven with copies of itself (see 
Section 7.2). Those copies however have to be a scaled version of the original surface. We can solve this by 
starting with a cone instead of a cylinder. In that case the scaling is introduced in the black/white tiling. And 
therefore we can create a helical hole surface of which a copy will fit in the empty space of the original 
surface. 
 
9.3.  Fibonacci Tilings.  There is also a way to introduce the scaling of the tiles in a flat tiling. For that we 
have to look at patterns that are based on the Fibonacci numbers. When we use the logarithmic spiral which 
is related to the Fibonacci numbers, we can create tilings in which each tile is a scaled copy of any of the 
other tiles. All tiles have the same shape but not the same size. These so called Fibonacci tilings can also be 
found in nature. A well known example is the pattern of the seeds in a sun flower. The net of such a tiling is 
the intersection of two sets of logarithmic spirals. If we choose the right combination of  the number of 
spirals in each of those sets we can get a tiling that can be colored in a checkerboard fashion. In the example 
in Figure 52 there are 7 spirals in one set and 9 spirals the other. Based on this tiling we can construct an 
helical hole surface. 
 

 
 
Figure 52:  Fibonacci Tiling                          Figure 53:  Spiral Helical Hole Surface 
 
And now we have got a spiral helical hole surface (Figure 53) that can be interwoven with an exact copy of 
itself. 
 

10.  Conclusion  
 

10.1.  Weaving and Helical Hole Surfaces.  In architecture most of the ideas for constructions are based on 
nature. Weaving is invention of mankind and a lot of possibilities are still to be discovered. The discovery of 
the spiral hole surfaces leads to organic looking structures based on patterns that we know from nature. In a 
way it brings us back to the question: Does nature weave? The 3D weave structures of Kenneth Snelson have 
inspired me very much. This is my attempt to explore this a little further. I realize it is just a start. 
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