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Abstract
Mad weave (anyam gila) is a type of basketry originating in Indonesian area. There is very little literature on the 
technique, and it is not widely used, but it produces a very pleasing fabric, with a symmetry (p6, or 632 in orbifold 
notation) that makes it suitable for the construction of polyhedra with triangular and hexagonal faces. Unlike baskets 
(which cannot be used if they have no opening) woven polyhedra are closed structures, and the weaving elements form 
closed loops. If the polyhedron is woven on the skew to the edges of the faces the weaving elements in general follow 
complicated paths that are difficult to predict, but on the tetrahedron they are quite straightforward. A skew mad 
weave tetrahedron with a non-trivial colour pattern is described.

Mad Weave

Mad weave is a basketry technique with weaving elements in three directions (at 60° to each other) woven 
close together so that an almost continuous surface is produced. Technically it is a twill weave since for any 
pair of directions the weaving elements in one direction go under 1 over 2 (those in the other direction go 
over 1 under 2). The weaving pattern is cyclically related: A goes under 1 over 2 Bs (so B goes over 1 under 
2 As), B goes under 1 over 2 Cs, C goes under 1 over 2 As (figure 1). The resulting structure has p6 (632) 
symmetry, with small holes occurring at the centres of sixfold and threefold symmetry. It is important to 
remember  the distinction between the two types of  hole  and the chirality of  the weave when trying to 
understand how it works, especially when trying to create it practically.  

Figure 1: A sample of mad weave.

The technique seems to have originated some time before nineteenth century, probably in Eastern Indonesia, 
and an early account [1] goes into some detail about the preparation of the traditional material (pandanus 
leaf) and the method of working. The basket starts with six strands around one of the sixfold centres of 
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symmetry, and is built up by working in three directions, braiding, not weaving. This seems to have been the 
only primary information available because the detailed technical description that follows was worked out by 
American craft-workers.

Shereen LaPlantz’s Method

Probably the most  influential description of  mad weave [2] is rather difficult  to  obtain,  but  it  has been 
reprinted by The Caning Shop (www.caning.com). The author was very well-known as an artist and teacher, 
and she set out to find an easy way to make mad weave that is accessible to ordinary craftspeople. Her 
method minimises the many potential sources of  confusion by setting down rules that are quite easy to 
remember, and will guarantee success if they are followed consistently.  She begins by weaving the base of 
her basket, initially as an over 1 under 2 twill in two of the three directions. Her rules rely on strong visual 
cues, and she is very specific about which directions to use so that the intermediate stages have the right 
appearance. She then laces-in the elements in the third direction, guided by cues in the existing framework.

The corners of a mad weave structure are the greatest potential source of difficulties. LaPlantz’s rules specify 
exactly how to continue weaving a twill at the corners, and then all that is needed is to complete the fabric by 
lacing-in the remaining elements.

This method is undoubtedly a very successful way to create mad weave baskets, but the inflexible rules can 
become a limitation, and they provide little insight into the underlying geometry of the structure. It is also 
difficult to use with less flexible materials, especially at corners.

Richard Ahrens’s Method

Richard Ahrens has attended several Bridges conferences, and many of his works have been displayed in the 
conference  art  exhibition.  His  “Genus  1  doughnut”  and  “Genus  2  doughnut” 
(http://www.bridgesmathart.org/art-exhibits/bridges06/ahrens.html) are coloured in a way that illustrates his 
method of creating mad weave. He begins with the much more common open hexagonal plaiting [3] (figure 
2 left), then fills-in the open hexagons.

Figure 2 illustrates how mad weave actually consists of  three interlaced open hexagonal structures. The 
central image shows two of them, and that on the right the complete mad weave. Notice that open hexagonal 
plaiting consists of open hexagons surrounded by apparently closed triangles. Interlacing another such layer 
breaks up half of the triangles, creating the characteristic sixfold centres of mad weave, and introduces new 
ones into the open hexagons. If at each point of sixfold symmetry of the completed mad weave the two 
interlaced open hexagonal layers are separated in a consistent way so that A always lies above B, B above C 
and C above A, three interpenetrating surfaces (each defined by open hexagonal plaiting) corresponding to 
an arrangement described by Rinus Roelofs [4] is produced. In fact it is just mad weave again from another 
point of view.

Richard Ahrens normally uses plastic strapping, which is quite stiff and very suitable for open hexagonal 
plaiting, but it is quite difficult to use for mad weave, especially at corners. By first creating a supporting 
open hexagonal framework his method avoids the serious practical difficulties that Shereen LaPlantz’s has 
with stiff materials. Its major disadvantage is that it can be quite confusing in the intermediate stages, and it 
is not always very obvious whether to weave a strand over or under. It is fairly straightforward if the original 
open hexagonal plaiting is obvious (do the opposite of the neighbouring strand in the original structure), 
which could be why his two mad weave pieces are coloured the way they are. If a different colouring scheme 
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is used it can be far from obvious which strands belong to the original structure except at the start, and other 
guides must be used.  Near the end it  is quite easy to  recognise the visual cues that LaPlantz uses, but 
otherwise it is all too easy to go wrong.

                  

Figure 2: Filling an open hexagonal structure to produce mad weave.

Colour Patterns

One of the great attractions of twill is the wide variety of colouring effects that it can generate. Weavers are 
restricted to a warp and weft at right angles, but nevertheless they can create a huge array of patterns which 
are also available to basket makers [5] [6]. Mad weave provides further possibilities. LaPlantz [2] considers 
some with two colours, and David Fielker has considered what might be possible with three colours [7]. 
There does not seem to be any theory that relates the sequence of colours in the elements to the appearance 
of the resulting pattern, even in the simpler case of right-angle weaves, and the usual approach seems to be, 
“try it and see”. In fact beginner-weavers often produce samplers of patterns [8] for their future reference, 
and in order to develop some intuition for the way things work. There are further complications with mad 
weave because the structure has a period of three in each direction, allowing more variation in the relative 
phases.

Generally colour patterns change at corners, but in a few cases it is possible to create a basket that is coloured 
consistently. For example an open hexagonal basket can be converted to mad weave using a contrasting 
colour, resulting in a consistent pattern, as in the Richard Ahrens pieces already cited and figure 2. Shereen 
LaPlantz considers this pattern, and indicates that it is not consistent: her illustrations show that a base with 
this pattern will give sides that are different. The reason is that it will be consistent only if all the corners 
have the same position relative to the open hexagons. In other words an edge of the base must have the 
number of elements in any direction a multiple of 3, so she must have derived her diagrams from baskets of 
a different size.

Polyhedra

Although most traditional basketry products are open there are a few, typically for use in games, that are 
topological  spheres.  Cubes  are  probably  the most  obvious,  and  examples  exist  with weaving  elements 
parallel to the edges, but they can also be created by plaiting diagonally to the edges [9]. The commonest 
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basketry balls consist of six loops lying in diametral planes, corresponding to the edges of a (more or less 
spherical) icosidodecahedron.

Triangles and hexagons are the most  natural polygons produced with mad weave (and open hexagonal 
plaiting) although 60° rhombi and rectangles built from modules with 3 proportions are also possible. It is√  
possible  to  make  three  Platonic  polyhedra  (tetrahedron,  octahedron  and  icosahedron)  along  with  two 
Archimedeans (truncated tetrahedron and hexagonal antiprism) [10]. Richard Ahrens’s method is the most 
convenient, starting from open hexagonal forms. Corners are achieved by reducing the number of elements 
in a hexagon by doubling a strand for a 5-edge vertex, doubling two for a 4-edge vertex, such as in an 
octahedron, and doubling three for a 3-edge vertex, so that each strand does a 180° U-turn. The same method 
works with mad weave, but it will only work at points of sixfold symmetry, not at the threefold points.

Figure  3  shows  an  open  hexagon  icosahedron,  which  can  be  seen  as  the  traditional  six  loop 
icosidodecahedron with some added elements, although there would be problems constructing it in this way 
because of the difficulty in keeping the lengths right. The existing structure keeps everything in place if it is 
built using open hexagonal plaiting.

Figure 3: An open hexagonal plaited icosahedron.

All of the Platonic polyhedra produced in this way have diametral loops (the tetrahedron has three loops in 
planes mutually at right angles and the octahedron four) with smaller loops in parallel planes, so that many 
small  lengths are used  in the construction.  The hexagonal  antiprism is  rather more interesting,  and the 
simplest open hexagonal construction needs only two strands, so that six are needed to make the mad weave 
equivalent (figure 4). The open hexagonal framework has strands of opposite colour, and the mad weave is 
completed  by  adding  in  pairs  of  strands  that  are  opposite  in  colour  to  the  parallel  strand  in  the  base 
framework. The chiral appearance of the finished polyhedron results from the chirality of the structure.

    
Figure 4: Three views of a mad weave hexagonal antiprism.
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Skew Weaving

If the principal directions of  a weave are skew to the edges of  a polyhedron then in general each strand 
follows a complicated closed path around the surface. Felicity Wood has explored many of the simpler 
possibilities on a cube [11], and been surprised by the range of different configurations she has found. There 
is a similar situation with open hexagonal and mad weave polyhedra with the exception of the tetrahedron.

One way of trying to understand polyhedra woven on the skew is to imagine that the weaving is unwrapped 
by rolling the polyhedron around the appropriate edges in turn on a plane. The weaving element will end up 
along a line in the plane, and the faces of the polyhedron can be imagined stamping their images onto the 
plane. The line will pass through every image on the plane. For most polyhedra, if they are rolled around 
their edges on a plane the face of the polyhedron in contact with the plane at any given position on depends 
on the path taken. This is because if it is rolled around a fixed vertex, when it comes to its starting position a 
different face is on the bottom. For example three faces of a cube meet at a vertex but it needs to roll through 
four squares on the plane to complete a circuit. The tetrahedron is an exception because it turns through two 
circuits for one circuit of a point in the plane, so that if each of the faces of the tetrahedron were given a 
different colour, with the colour is transferred to the plane, a uniform colouring of the tessellation 3 6 is 
produced as the tetrahedron rolls  around.  Kodi  Husimi has observed that the Japanese pattern Kagomé 
(essentially open hexagonal  plaiting) can be produced by rolling a tetrahedron and printing from it  the 
projection of an octahedron [12].

This means that if a tetrahedron is woven on the skew no weaving element changes its direction as it covers 
the surface, so it is possible to produce a mad weave tetrahedron with exactly three strands (figure 5).

  
Figure 5: Three views of a three strand mad weave tetrahedron.

The view along a twofold axis of rotation (figure 5 centre) shows how a strand takes a more or less helical 
path around the tetrahedron.  Since there are only three strands the only reasonably symmetrical  colour 
pattern has them all different.  The elements of symmetry of the tetrahedron either leave the colours invariant 
(twofold) or cyclically permute the colours (threefold).

These skew structures are quite tricky to produce in practice, and the only method I have found that works is 
to make a section of  flat mad weave, identify the corners and weave the loose ends together, removing 
elements as necessary.

A Skew Mad Weave Tetrahedron with Non-trivial Colour Pattern

The next simplest possibility is to have two strands in each weaving direction (six in all). This provides some 
opportunity for more interesting colour patterns, but with reduced symmetry. There are two strands at each 
edge of the tetrahedron. Consider the three strands lying just on the inside of a face. If there are two colours 
(one of each at each edge) then they must be all the same if threefold symmetry is to be preserved, but there 
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is no way to do this consistently on all four faces, and there is no way for a threefold symmetry element to 
interchange two colours. If there are three colours then it is possible to interchange the colours cyclically, but 
the  fact  that  opposite  edges  must  have the same weaving elements forces  each of  the  remaining three 
triangles to have two edges of the same colour. The only colour symmetry is a single threefold rotation that 
cyclically interchanges the colours.

Figure 6 shows such a tetrahedron, and the colouring is surprisingly complex for such a simple scheme. One 
reason is that the loops are in effect single strands that are doubled,  so the sequence of  colours in any 
direction is AABBAABB…but the weaving pattern has an intrinsic periodicity of 3, so the repeat distance of 
the pattern is 12 strand widths.

Obviously there is a whole series of  tetrahedra with an increasing number of  elements = 3n,  and if  n is 
divisible  by  3  they  can  be  made  starting  with  an  open  weave  framework.  Colour  schemes  will  have 
tetrahedral symmetry (in the same way as the n = 1 case) only if the pairs of elements symmetrical about an 
edge have the same colour (applying the same arguments as in the n = 2 case).

     
Figure 6: A skew mad weave tetrahedron with six strands in three colours.

.
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