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Abstract

We demonstrate different ways to create and visualize tilings made with hyperbolic kaleidoscopes. We start with 
tiling of the hyperbolic plane and build bended kaleidoscopes in the hyperbolic space.  

 
One can build only 4 different kinds of kaleidoscopes in two dimensional euclidean plane. In orbifold 
notations[1]  these  kaleidoscopes  are  *422,  *333,  *632,  *2222.  The  hyperbolic  plane  admits  infinite 
number of different types of kaleidoscopes, most of which also have independent continuous parameters 
defining the shape.  Hyperbolic plane kaleidoscopes were first  used in art  by M.C.Escher in his  four 
Circle Limit woodcuts. All M.C.Escher's prints and most of other existing hyperbolic art work (see [2,3] 
for  example),  with  rare  exceptions[1,4]  are  based  on  the  triangular  hyperbolic  kaleidoscopes.  Three 
angles at the corners of triangular hyperbolic kaleidoscope should be sub-multiples of π (π/n, n > 1) or 
zero and the sum of the angles has to be strictly less than  π. These conditions are satisfied by infinite 
number of hyperbolic triangles. Hyperbolic triangles are rigid, their shape and size is fixed by fixing the 
angles.  Fig 1. shows examples of tiling formed by triangular hyperbolic kaleidoscopes presented in the 
Poincare disk model. 

Figure 1: Triangular hyperbolic Kaleidoscopes *642, *334, *24∞, *543

Hyperbolic  geometry  admits  much  wider  set  of  kaleidoscopes  beyond  triangles.  In  general,  an 
arbitrary polygon with arbitrary number of sides and angles, which are sub-multiples of  π can be used to 
make hyperbolic kaleidoscope. Fig.2 shows tiling generated by quadrilateral, pentagonal, hexagonal and 
and octagonal kaleidoscopes. The shape of the hyperbolic n-gon has n-3 degrees of freedom: lengths of 
some n-3 sides. Euclidean plane has such similar flexible kaleidoscope *2222 - rectangle with arbitrary 
aspect ratio.  Fig 3. shows few tiling made by pentagonal hyperbolic kaleidoscopes with all right angles 
*22222. Lengths of two sides of pentagon are free parameters.

We  can  get  much  wider  variety  of  kaleidoscopes  by  bending  the  fundamental  polygon  in  three 
dimensions. The simplest hyperbolic polygon which can be bended is quadrilateral *3222 (fig 2 left) with 
three right angles and one angle π/3.
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Figure 2: Polygonal  hyperbolic kaleidoscopes *3222, *22222, *222222, *22222222

Figure 3: Stretching pentagonal kaleidoscope *22222. Two sides of the pentagon are arbitrary. 

Let's place the polygon in  xy-plane of the hyperbolic space presented in Klein-Beltrami ball model. 
Let's build three dimensional chimney with z-axis as it's spine and *3222 polygon in xy plane as its' cross 
section  (fig.4  left).  Reflections  in  the  faces  of  the  chimney  form  three  dimensional  hyperbolic 
kaleidoscope and  the  chimney is  fundamental  polyhedron of  this  kaleidoscope.  This  polyhedron  has 
infinite size and infinite volume in this case. The tiling formed by this kaleidoscope in the x-y plane  is the 
same as the tiling formed by two dimensional kaleidoscope. The tiling is repeated with some distortion at 
the upper and lower half spheres where chimney intersects the ball's boundary (fig.4 center). Let's map 
ball's boundary back onto the  x-y  plane using reflection in the sphere with center at (0,0,1) and radius 
2 (stereographic projection) (fig.4 right).  The tiling at the lower half-sphere is mapped into exactly 
the same original two dimensional tiling inside of the Poincare disk. Tiling from the upper half sphere is 
mapped into outside of the unit disk and is in fact inversion of the inside tiling in the unit circle. 

Figure 4. Mapping  the disk onto the sphere and onto the plane via stereographic projection.
Drawing is done in  the Klein -Beltrami model of the hyperbolic space in which faces of the 
chimney are euclidean planes. 
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Next step is to modify the chimney to make kaleidoscope truly three dimensional. Let's rotate one face 
of the chimney in such a way, that dihedral angles between this face and its neighboring faces do not 
change. We can do this by rotating the side about common perpendicular to it's two neighboring sides. 
Evolution of the tiling in x-y plane is shown at Fig.5 and 6. The circular tiling by quadrilaterals from Fig.2 
left is initially transformed into the shape with complex fractal boundary (fig 5.left). Fig. 5 center shows 
formation of the cusp (intersection of two sides at infinity). Further rotation will cause finite intersection 
of non neighboring sides of the chimney (fig 5 right). Further rotation causes formation of a new vertex of 
the fundamental polyhedron and closing upper entrance of the chimney. Initially this vertex is formed at 
infinity (fig.6 left) and moves to finite distance by further rotation. In order to have proper kaleidoscope 
each new edge should have proper dihedral angle (π/n). This condition puts additional constrains on the 
rotation angle and lengths of the sides. 

If  the  fundamental  polyhedron  in  the  hyperbolic  space has  finite  volume  it's  shape is  completely 
defined by the set of dihedral angles and kaleidoscope is not flexible (Andreev-Thurston theorem[6]). The 
two  dimensional  pattern  formed  in  x-y  plane  by  such  kaleidoscope  is  boring  set  of  infinitely  many 
infinitely small tiles, so only three dimensional visualization of such kaleidoscope makes sense, see [7] 
for few examples. 

There are a lot of mathematical  publications on the theory of symmetry groups of the hyperbolic plane 
and space. However, very few have illustrations going beyond the most simple (rare exceptions are [1,5]). 
Here we have tried to show aspects of the hyperbolic symmetries which are rarely have been visualized. 
Hyperbolic kaleidoscopes can be much more complex (see Fig 7 for example), and are waiting for an 
artistic applications.
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Fig 7. Kaleidoscope formed by bended octagon *22222222
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Fig 5. Rotation of chimney's face. Tiling's boundary becomes fractal curve.

Figure 6. Further rotation of the chimney's face. Tiling fills the whole plane.
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