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Abstract 

 
This paper contains a survey of different methods for generating knots and links based on geometric polyhedra, 
suitable for applications in chemistry, biology, architecture, sculpture (or jewelry). We describe several ways of  
obtaining 4-valent polyhedral graphs and their corresponding knots and links from geometrical polyhedra: mid-
edge construction, cross-curve and double-line covering, and edge doubling constructions. These methods are 
implemented in LinKnot and can be applied to the data bases of polyhedra. In a similar way, an edge doubling 
construction  transforms fullerene graphs into alternating knot and link diagrams. 
 

Introduction 
 
The initial interest in knot theory was motivated by Kelvin's theory of atomic structure (1867). By the 
turn of the century, scientific confirmation of Mendeleev's periodic table showed that  Kelvin's theory was 
incorrect, so chemists were no longer interested in classifying knots, but mathematicians, in particular 
topologists, continued to study them. 

However, around 1960 the focus of chemists turned towards attempts to synthesize molecular knots 
and links. The first pair of linked rings in a form of the Hopf link, a catenane, was synthesized by 
H.Frisch and E.Wasserman in 1961. In 1989 C.Dietrich-Bushecker and J.-P.Sauvage produced the first 
molecular knot, a trefoil made out of 124 atoms. They introduced stereochemical topology: synthesis, 
characterization, and analysis of topologically interesting molecular structures [1,2]. 

Synthesis of the first molecular Moebius ladder with three rungs by D.Walba, R.Richards and 
R.C.Haltiwanger in 1982, and the addition of twists to it managed by Q.Y.Zheng in 1990, enabled the 
generation of numerous knots and links. In fact, breaking rungs in the Moebius multi-strand twisted 
ladders turns it into a molecular closed braid representation of a knot or link. 

Indonesian weaving and Tamari balls inspired the original tensegrity researchers, B.Fuller and K. 
Snelson to use knots and links in architecture. Their approach became more popular during the last 
decades, with the use of light-weight materials, tensegrity and computer design tools (CAD/CAM).  

From the point of view of organic chemistry, molecular biology, or architecture the most interesting 
cases are complex knotted and linked structures with a high degree of symmetry. However, tabulation of 
knots and links, as well as computing of knot invariants is restricted to knots and links with relatively 
small number of crossings. 

In some sources the end of the 19th century is called the "dark age of the knot theory", because the only 
ways to distinguish knots was by a few "non-exact methods". However, the first knot tables were created 
during that period by P.G.Tait, T.P. Kirkman and C.N.Little. The next big step in knot tabulation 
happened almost a century later, when M.Thistlethwaite and his collaborators compiled new knot and link 
tables using computers. At the moment, even supercomputer cannot improve on these computations. The 
existing knot tables contain alternating knots up to 24 crossings, and non-alternating knots up to 16 
crossings. Very recently, M.Thistlethwaite tabulated non-alternating knots up to 19 crossings, alternating 
links up to 18 crossings, and non-alternating up to 12 crossings [3].  These tables are insufficient for 
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applications because knots and links relevant to biology, chemistry or architecture have a higher number 
of crossings. Moreover, most tabulated knots and links have a low degree of symmetry, unlike the knotted 
natural structures, because nature, art, and architecture prefer symmetry and complexity. Hence, many 
chemists have tried to determine whether knots and links are new forms of molecular structures [4-6]. 
Geometrical characteristics and the polyhedral shapes of biological molecules have attracted much 
attention, and remarkable discoveries were made in the control and syntheses of polyhedral links or 
catenanes, such as the DNA tetrahedron, DNA cube, DNA truncated octahedron [4], DNA octahedron, 
and more recently DNA bipyramids and DNA prisms. Topologically linked protein catenane − a 72-
hedral link discovered in the context of virology, has been found in the mature empty capsid of a double-
stranded DNA bacteriophage. This and similar discoveries extended the domain of forms that are possible 
in the biochemical world. Many questions about newly discovered structures can be formulated in the 
language of knot theory and answered by using mathematical-topological and geometrical methods. The 
concept of "polyhedral links" is a novel mathematical model, proposed by Qiu's group for the first time in 
2005 and later leading to a series of papers in this field [5-6]. 

We propose using some well-known construction methods in knot theory, such as the mid-edge 
construction, for modeling knots and links that arise in chemistry and biology. For example, the mid-edge 
construction consists of replacing mid-edge points of a graph by 4-valent vertices and joining the adjacent 
loose ends. Furthemore, we can transform graphs into alternating knot and link diagrams by introducing 
over-crossings and under-crossings, i.e., specifying the top and bottom strand in each vertex. 

All considerations in this paper are restricted to alternating knots and links. A detailed description of 
the Conway notation for knots and links, as well as the background material can be found [7-9]. Source 
link is link corresponding to a Conway symbol containing only tangles ±1 and ±2, and a link given by a 
Conway symbol containing only tangles ±1, ±2 and ±3 is called a generating link. Informally, a family of 
knots (or links) is obtained by adding twists to chains of digons in source or generating links. Note that 
adding an even number of twists preserves the number of components [9-11]. 

Additional material, including easy to use interactive webMathematica functions for experimenting 
and creating knots and links using all constructions described in this paper, can be found online at 
http://math.ict.edu.rs:8080/ webMathematica/poly/cont.htm . 

 
Polyhedral Knots and Links and their Construction 

 
The first class of graphs we consider is the 4-valent basic polyhedra corresponding to alternating 
polyhedral knots and links. Basic polyhedron is a 4-regular, 4-edge-connected, at least 2-vertex connected 
plane graph without digons. The derivation of basic polyhedra was completed up to 12 crossings by 
T.P.Kirkman, with one omission: the basic polyhedron 12E. Kirkman derived basic polyhedra by 
eliminating digons in knot and link diagrams, using only diagrams which satisfy the following necessary 
condition: each contains at most three digons belonging to the same face. Eliminating digons is achieved 
by inscribing triangles into faces, with the vertices belonging to the face edges (e.g., coinciding with their 
midpoints). The complete list of the basic polyhedra with n=12 crossings was obtained by A.Caudron in 
1982 by composing hyperbolic tangles. The program LinKnot contains the data base of basic polyhedra 
up to 20 crossings. The database of basic polyhedra is produced from the list of simple 4-regular 4-edge-
connected, but not 3-connected plane graphs generated by Brendan McKay using the program "plantri" 
written by Gunnar Brinkmann and Brendan McKay (http://cs.anu.edu.au/~bdm/plantri/). This data base 
contains in total 83 177 basic polyhedra up to 20 crossings. The list of basic polyhedra includes 2-vertex 
connected basic polyhedra which are not actual geometrical polyhedra. The first example of that kind is 
the basic polyhedron 12E. The term “polyhedral links” stands for knots and links derived from different 
geometric polyhedra by mid-edge construction (Fig. 1a) or cross-curve and double-line covering (Fig. 
1b), as well as the alternating source links derived from 3-valent geometrical polyhedra by edge doubling 
(Fig. 1c). 

 
 
 

Jablan, Radović and Sazdanović
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Figure 1: (a) Mid-edge construction; (b) cross-curve and double-line covering construction; (c) edge doubling 
construction. Broken lines denote edges of the original graph deleted during the construction. 

 
Mid-edge Construction 

 
The middle graph M(G) of a polyhedral graph G, is obtained by connecting the mid-edge points of G (Fig. 
1a) belonging to the adjacent edges of G. Clearly, the resulting M(G) is always a 4-valent graph, i.e., a 
basic polyhedron. Every at least 3-vertex connected basic polyhedron is the middle graph of some 
geometrical polyhedron. After turning M(G) into an alternating link diagram DL, by introducing over-
crossings and under-crossings in an alternating manner, the graph G is the graph of the link diagram DL, 
i.e., G(DL)=G, so the constructions of a graph of a link diagram G=G(DL) and a middle graph DL=M(G) 
are mutually dual. If the original graph G does not contain digons, the same holds for its middle graph. 
 
 

 
 

Figure 2: Escher’s solid from the Mathematica data base of polyhedra [12] and basic polyhedra obtained from it and 
its transforms (truncated, stelated and geodesated Escher solid) by mid-edge construction.   

 
Cross curve and Double-line Covering 

 
     In the paper [6] a new methodology for understanding the construction of polyhedral links has been 
developed based on the Platonic and Archimedean solids by using the method of the "cross-curve and 
double-line covering" introduced by the authors (Fig. 1b). In order to obtain 4-valent graphs they 
introduce the cross-curve and edge doubling construction: first replace n-valent vertices of a polyhedral 
graph by n-cross-curves, and then join the adjacent loose ends to obtain a double-line covering.  

 
Edge Doubling 

 
The next construction, called edge doubling (Fig. 1c), can be used for obtaining 4-regular graphs from 3-
regular graphs: in every vertex of a 3-regular graph one edge is replaced by a double edge (digon) [8-11]. 
In particular, the edge doubling construction can be applied to graphs of truncated polyhedra, which are 
always 3-valent, yielding various polyhedral source links.  
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Figure 3: Basic polyhedra obtained from Escher’s solid and its transforms by cross-curve and double-line covering. 

 
 

Mathematica Data Base of Polyhedra and Transformed Polyhedra 
 
 The database of polyhedra in Wolfram Mathematica contains more than 100 interesting polyhedra, that 
can be used as an input for the construction methods described in this paper (Figs. 2-3). Moreover, by 
choosing between four different options: 0 for original input polyhedron, 1 for truncated, 2 for stellated, 
and 3 for geodesated, you can work with various transforms of the original polyhedra. Using as an input 
any of the mentioned families of polyhedra, polyhedra from  the Mathematica database, their transforms, 
or basic polyhedra from the LinKnot database, you can obtain mid-edge graphs after s iterations. 
 

Knots and Links  and Fullerenes 
 
Among the chemical elements, carbon, C, is the basis of all life. A whole branch of chemistry, organic 
chemistry, is devoted to the study of C-C bonds and different molecules originating from them. So far, 
carbon is the only known 4-valent element able to form long homoatomic stable chains or different 4-
valent nets. Another candidate is silicon, whose homoatomic chemistry is rapidly developing. 
 

 
Figure 4: Hamiltonian cycle on fullerene C60 and edge doubling applied to C60. 

 
     Fullerene is a 3-planar graph with pentagonal and hexagonal faces. In addition to the well-known 
diamond and graphite, a new form of carbon, the fullerene C60, was first synthesized by H.W.Kroto, 
R.F.Curl and R.E.Smalley in 1985. Along with its remarkable 3-dimensional structure, a spherical closed 
pentagonal/hexagonal homoatomic shell, it contains exceptionally rare rotational symmetry of order 5 
(which according to Barlow's crystallographic restriction theorem is forbidden in crystallographic space 
or plane symmetry groups) and the highest possible, icosahedral, point-group symmetry. Since the 
discovery of C60, different fullerenes (e.g., C70, C76, C78, C82, C84, etc.) have been synthesized, opening a 
new field for research of potentially different possible fullerene structures from the point of view of 
geometry, graph theory, or topology. The most complete discussion of fullerenes is given by P.D.Fowler 
and D.E.Manolopoulos [13]. 

Jablan, Radović and Sazdanović
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     Every fullerene has exactly 12 pentagonal faces. For every even n>23 there exists at least one fullerene 
Cn . Chemical fullerenes are obtained from fullerene graphs by substituting vertices with carbon atoms. 
     In the paper “Geometry of Fullerenes", republished in [9] the first author proposed considering 
fullerenes as alternating knots and links. First, we can consider all 4-valent graphs on a sphere. In 
chemistry, vertices of type 1111 (×) are only theoretically acceptable. In knot theory, 4-valent graphs on a 
sphere with all vertices of the type 1111 are exactly the basic polyhedra. A general fullerene is a graph 
whose vertices are of the type 211 (=<).  Every general fullerene can be derived from a 3-valent graph by 
edge doubling (Fig. 4b). In knot theory, general fullerenes are source links derived from basic polyhedra 
by vertex tangle substitutions. In this paper we derive general fullerenes by edge doubling applied to 3-
valent polytope graphs derived by the program plantri written by Brendan McKay. Different link 
diagrams can be obtained from the same general fullerene graph by edge doubling.  
     A special class of fullerenes consists of 5/6 fullerenes: those which have only pentagonal and 
hexagonal faces. If n5 denotes the number of pentagons, and n6 the number of hexagons, n5 must be 12 by 
the Euler theorem, and the relation 3v=2e. Hence, C20, the regular dodecahedron {5,3}, is the first 5/6 
fullerene with n6=0. It has two non-isomorphic edge-colorings, resulting in two chemically different 
isomers of the same geometric dodecahedral form. 
     By using the program fullgen written by Gunnar Brinkmann, 5/6 fullerenes can be derived. The first 
fullerene satisfying Isolated Pentagon Rule (IPR) is C60. A complete list of fullerenes is computed for 
19<n<121 vertices, where for n>59 only fullerenes satisfying IPR are computed. For every fullerene from 
this list it is possible to obtain a graph obtained by edge doubling. 
 

Applications in Art and Architecture 
 
In the history of art and architecture knots and links, in particular basic polyhedra, played an important 
role. Typical examples are the plan of Michelangelo’s plaza based on the shadow of a torus knot (13,5) or 
Celtic “basic polyhedron” shown in Fig. 5. In contemporary architecture, even some very simple knots 
such as trefoil served as the basis for  the construction of buildings, e.g., Mercedes-Benz Museum in 
Stuttgart [14]. With the advance of digital techniques and availability of ultra-light materials ground plans 
representing shadows of knots and links now become 3D structures made from flexible elastic rods. 
Instead of rigid bodies, the buildings of the future can be transformable entities erasing from flat 4-valent 
nets to their 3D embeddings, similar to NODUS-structures proposed by D. Kozlov [15]. Usual geodesic 
domes based mostly on rigid 3-valent graphs can be replaced by 4-valent flexible geodesic domes.  
  

     
                        (a)                                               (b)                                                   (c)    

 
Figure 5: (a) Michelangelo’s plaza; (b) Celtic “basic polyhedron”; (c) Seifert surface created in LinKnot. 

 
     For every knot or link we obtain the corresponding Seifert surface: a surface whose boundary is a 
given knot or link. Seifert surfaces are very succesfully used in sculpture beginning from 1930-ties, e.g., 
in the works by Naum Gabo. In the contemporary art typical examples are sculptures by Bathsheba 
Grossman [16] created by the program Seifert View by J.J. van Wijk [17], or sculptures by A. Bulatov 
(http://bulatov.org/). In the program LinKnot we are able to create Seifert surfaces based on polyhedral 
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knots and links (Fig. 5c), preserving the symmetry and beauty of polyhedra, but having the additional 
flexibility and variability. 
 

Conclusion 
 

Because of their regularity and symmetry, polyhedra occupied the attention of mathematicians, natural 
scientists, and architects for centuries. In this paper we proposed several constructions of knots and links 
originating from regular, uniform (Archimedean), and other polyhedra. Knots and links obtained in this 
way preserve important symmetry properties of the original polyhedra and represent the basis for the 
construction of polyhedral knotted structures from the nano to the macro level. For a long time chemists 
strove to synthesize polyhedral molecules. Despite the recent achievements, there is still a gap between 
the great variety of polyhedral shapes observed in nature (such as viral protein capsids) and the relatively 
limited molecular polyhedra constructed by small organic molecules. Recently, DNA was shown to be an 
excellent material for polyhedral knotted constructions, such as the DNA tetrahedron, cube, octahedron, 
dodecahedron, icosahedron, etc. We hope that this paper offers some theoretical background for 
development of general construction methods for polyhedral knots and links in stereochemical topology 
or architecture. 
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