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Abstract
Given a regular tiling of the torus, we want to depict it on a torus in space with as much conformal symmetry as
possible. In particular, the conformal type of the surface should agree with that implied by the regular tiling, and
symmetries not seen as Euclidean motions should be represented, whenever possible, by Möbius transformations.

There has been interest at Bridges [4] and elsewhere in finding symmetric embeddings of regular tilings
on surfaces. A regular tiling on the torus is a quotient of one of the three regular tilings ofR2 – by triangles,
squares or hexagons – and most naturally the tiles should have this regular Euclidean geometry.

More generally, any doubly periodic pattern in the plane has translational symmetries by some latticeΛ.
Up to similarity (rigid motion and scaling), we take the shortest nonzero vector in the lattice to be(0,1);
the second shortest (nonparallel) vector is then some(s, t) with 0≤ t ≤ 1/2 ands2 + t2 ≥ 1. The quotient
Ts,t := R2/Λ is a flat torus, a parallelogram with opposite edges identified. The original pattern can be
thought of as living on this torus.

Our goal is to draw a picture of such a regular tiling or other periodic pattern on a torus embedded in
space. Of course a flat torus cannot beisometricallyembedded inR3. But we suggest that nice pictures
should at least useconformallycorrect tori. Recall that a map is conformal if it preserves all angles between
curves. Of course similarities are conformal; other well-known examples include inversions in spheres (and
hence all M̈obius transformations), stereographic projection and the Mercator projection.

The conformal geometry of surfaces is well-understood mathematically via complex analysis. The Rie-
mann mapping theorem says that any two simply connected domains in the plane are conformally equivalent;
by extension any two topological spheres are conformally equivalent. (Any spherical tiling is most naturally
drawn on the round sphere!) On the other hand, a thick annulus is not equivalent to a thin annulus; similarly
not all tori are conformally equivalent. Instead, each torus is conformally equivalent to some flat torusTs,t as
above; but these flat tori for different(s, t) are conformally distinct.

It is easy to show that any torus in space with mirror symmetry across some plane (or even inversion
symmetry in some sphere) is conformally a rectangular torus (that is, a flat torusTs,0 for somes). In particular,
any torus of revolution is rectangular. Conversely, we can conformally embed any rectangular torus as a
round torus via the map

Ts,0 = R2/Λ→ R3, (x,y) 7→
(
scos2πx/s, ssin2πx/s, sin2πy

)
√

s2 +1−cos2πy
,

which is obviouslys-periodic inx and 1-periodic iny. Figures 1, 2, and 3 show regular tilings by 16 squares,
32 squares and 12 hexagons, respectively, embedded on the appropriate round tori via this map. This formula
is not the “standard” parametrization of the round torus but instead is derived by embedding the flat torus
isometrically inS3⊂ R4 and then using stereographic projection to map it conformally toR3. Note that the
ratio of the major and minor radii of the image ofTs,0 is R/r =

√
s2 +1.

Many doubly periodic patterns with extra symmetry do fit exactly on a rectangular torus. In particular
the five wallpaper groups∗2222, 22∗, 22×, ∗∗ and×× always imply a rectangular torus, while the three
groups with four-fold symmetry (442,∗442 and 4∗2) use in particular the square torusT1,0.
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Figure 1: A 4×4 array of squares (left) fits on the square torus T1,0, which is conformally a quite thick round
torus (right). The diagonal grid lines – always meeting at right angles – help to show the conformality. They
form (1,±1) diagonals on the torus, each of which is a round (Villarceau) circle in space.

Figure 2: An8×4 array of squares (left) fits on the rectangular torus T2,0, conformally a thinner round torus
(right). The diagonal grid lines again meet at right angles, but are now(2,±1) diagonals on the torus.

But other symmetric patterns fit most naturally on a rhombic torus. A lattice isrhombicif it is generated
by two vectors of equal length. (In the coordinates above, we haves = 1/2 or s2 + t2 = 1, depending on
whether the rhombus has an angle smaller than 60◦). In particular, the symmetry groups 2∗22 and∗× fit on
any rhombic torus, while the five groups with three-fold symmetry (632,∗632, 333,∗333 and 3∗3) use in
particular the hexagonal torus with(s, t) = (1/2,

√
3/2).

As we have noted, a nonrectangular torus (in particular, a rhombic torus other than the square torus) is
not conformally equivalent to any round torus or even to any torus embedded with mirror symmetry. To
embed it conformally in space, we need to twist things in some way. One way to understand this intuitively
is to note that the diagonals of the rhombus are unequal in length – thus the(1,1) and(1,−1) diagonals on
the torus must have unequal lengths (in the appropriate conformal sense).

Ulrich Pinkall [3] has described a nice way to isometrically embedanyflat torus intoS3⊂ R4 as aHopf
torus, i.e., the lift (the preimage) of a closed curveγ ⊂ S2 under the Hopf fibrationS3 → S2. Indeed, any
γ that has length 4πs and encloses a fractiont of the area of the sphere will lift to the torusTs,t . Again, by
stereographic projection, this isometric embedding inS3 yields a conformal embedding inR3.

On a Hopf torus, the(1,1) curves are still round (Hopf) circles, but the(1,−1) curves oscillate in
the same wayγ does, and are thus longer. Of course, givens and t, there is not a single natural choice
for the curveγ. One idea is to minimize its elastic energy under the length and area constraints, perhaps
also imposing certain symmetry. If we do this, the resulting tori are known to be constrained Willmore
surfaces [1], that is, critical points for the Willmore bending energy given fixed conformal type. The surfaces
shown in Figures 4 and 5 were generated this way, using Brakke’s Evolver [2] to minimize the energy ofγ.
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Figure 3: This pattern of12 hexagons (left) fits on the rectangular torus with aspect ratio s= 2/√3, confor-
mally again a round torus (right). The grid lines shown, meet at60◦ angles and form latitudes and(2,±1)
curves on the torus.

Probably the most famous regular tiling of the torus is that by seven hexagons; this map of seven coun-
tries cannot be colored with fewer than seven colors, since each pair of countries is adjacent. It has three-fold
symmetry and thus lives on the hexagonal torus, which is (in a certain sense) the furthest from being rectan-
gular. Any conformal embedding of the hexagonal torus will be strongly twisted, as in Figures 4 and 5.

Figure 4: The map of seven countries fits on the hexagonal torus, with a rhombic fundamental domain (left).
If we conformally embed this torus, it will be highly twisted, far from having any mirror symmetry. A2-fold
Hopf torus, the lift of a curveγ looking like the seam of a baseball, has two huge spherical lobes (right).
This figure and the next two use grids of constant-width lines in the flat metric; their width in the conformal
pictures helps show the conformal stretch factor.

Any flat torus has plenty of intrinsic symmetry: 2-fold rotations around any point and translations by any
amount. (Rhombic and rectangular tori have in addition reflection symmetry, while the the square torus and
the hexagonal torus even have higher-oder rotations.) If a rectangular torusTs,0 is conformally embedded as
above as a round torus in space, all its intrinsic symmetries are seen as Möbius transformations. (Indeed,
before stereographic projection, they are seen as ambient isometries ofS3.)

For nonrectangular tori, the situation is quite not as nice. Pinkall’s Hopf tori have full translational
symmetry in one direction (along the Hopf circles). Again, these symmetries are seen as rigid motions inS3

or Möbius transformations inR3. But the most we can hope for is discrete translational symmetry in the
other direction, coming from symmetry of the curveγ. By choosing a 7-fold symmetricγ, for instance, we
can arrange for a conformal picture of the map of seven countries (Figure 5, right) in which any country can
be sent to any other by a M̈obius transformation.
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Figure 5: The hexgonal torus can also be realized as a Hopf torus in other ways, for instance with 4-fold
symmetry (left). For our regular tiling by seven hexagons, an especially nice version uses a 7-fold Hopf torus
(right), where the seven countries are Möbius-equivalent to each other. The grid lines – consistent across
Figures 4 and 5 – again demonstrate the conformality, since they clearly always meet at equal angles.

Any rhombic torus is double-covered by a rectangular torus. (A rectangle cut along its diagonals re-
assembles to two rhombi.) Thus if we don’t mind seeing two copies of our original pattern, we can embed
it conformally on a round torus. For instance, Figure 6 shows a tiling by 14 hexagons, double-covering the
map of seven countries, and fitting nicely on a round torus.

Figure 6: This regular tiling of the torus by14 hexagons also fits on the rectangular torus T√
3,0 and thus

conformally on a round torus. It is a double cover of the map of seven countries.
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