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Abstract 
 

Natural (or intrinsic) coordinate systems parameterize curves based on their inherent properties such as arc length 
and tangential angle, independent of external reference frames. They provide a convenient means of representing 
many organic, flowing curves such as the meandering of streams and ocean currents. However, even simple 
functions written in natural coordinates can produce surprisingly complex spatial patterns that are difficult to 
predict from the original generating functions. This paper explores multi-frequency, sine-generated patterns in 
which the tangential angle of the curve is related to the curve’s arc length through a series of sine functions. The 
resulting designs exhibit repeating forms that can vary in subtle or dramatic ways along the curve depending on the 
choice of parameter values. The richness of the “pattern space” of this equation suggests that it and other simple 
natural equations might provide fertile ground for generating geometric, organic and even whimsical patterns. 

 
 

Introduction 
 

Consider the path of the Alaskan stream shown in Figure 1. It invites you to trace over it with your eyes, 
following the folds and curves. You scan the repeating bends looking for patterns and variations. The 
forms repeat just enough to suggest that there might be some hidden, deeper order to be discovered if you 
just look a little longer. The curve has hints of symmetry, yet not enough to render it lifeless. While 
symmetry can be a powerful organizing principle in visual art, it can also be stifling, leaving little room 
for individual character. Carol Bier [1] refers to the “tyranny of the repeat,” a term coined by fiber artist, 
Katherine Westphal [2]. As Bier suggests, beauty arises through variation and symmetry breaking more 
often than it does through symmetry alone. In this paper I generalize a simple equation historically used to 
model river meanders in order explore the tension between rigid mathematical symmetry and the 
“playfulness” of organic variation.  

 
 Figure 1:  Sketch of the path of a meandering stream near Fort Yukon, Alaska derived from [3]. 
 
 Natural coordinate systems parameterize curves in terms of variables inherent to the curve itself. 
Planar curves parameterized by the tangential angle θ and arc length s are known as Whewell 
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equations [4]. Once the θ(s) function is specified, the Cartesian (x, y) coordinates may be obtained by 
integration:                   

x s( ) = cos! !s( )
0
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y s( ) = sin! !s( )
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This paper will explore a Whewell equation in which the tangential angle θ is written as the sum of N 
sine functions: 
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In general, each sine term has three parameters:  the amplitude Ai, the wavelength λi and the phase 
constant φi. The phase constant is set to zero in this paper to reduce the number of free parameters. 
Because only wavelength ratios affect the form of the pattern and since we are not concerned with the 
overall scale of the curve, the number of free wavelength parameters is N–1. Thus, the total number of 
free parameters including the amplitudes is 2N–1. The system of equations was solved by numerical 
integration using the midpoint rule and Simpson’s rule. The methods produced consistent and stable 
results over the range of step sizes employed. In the following sections, patterns will be examined 
containing one, two and three sine terms.  

 
 

Single-Frequency Patterns 
 

In 1849, Whewell [4] studied a family of intrinsic curves generated by a single sine function: 

! s( ) = Asin 2!
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These curves were later called sine-generated curves by Leopold [5]. Sine-generated curves have been 
suggested as a simple model for meandering streams [5-7], as an approximate solution to the bending of 
elastic rods described by Euler’s elastica [8,9], and as a tool for generating curved shapes used in 
designing font outlines [10]. Sine-generated curves were explored in three dimensions by [7]. In the 
present paper I extend sine-generated curves to include multiple frequency components. 
 

The wavelength λ controls the spatial scale of the curve, as may be verified through a change of 
variables u=s/λ with du=ds/λ. One immediately finds that the parametric curve (x(u), y(u)) linearly scales 
with the wavelength λ. The shape of the curve is not affected by λ. 
 

 
Figure 2:  Single frequency sine-generated curves as a function of the amplitude A. The curves were 

obtained through numerical integration. 
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The amplitude A controls the shape of the curve. The maximum tangential angle the curve makes 

with the positive x-axis is !max = A . Thus, when A = 0, the curve reduces to a straight line along the x-
axis. As the amplitude increases, the curve develops periodic oscillations. When A = π/2, the tangent line 
to the curve periodically becomes vertical (see Figure 2).  As A approaches π, the curve develops an 
alternating sequence of clockwise- and counterclockwise-loops. In general, when A = nπ, where n is an 
integer, the curve completes n rotations in each loop (e.g., see the A = 2π case in Figure 2). Closed loops 
are also possible. The approximate amplitudes producing the first three closed loops were found using 
numerical integration to be  A ≈ 0.76548 π, 1.75710 π, 2.7546 π.  

 
 

Winding Number and Pattern Rendering 
 

The winding number of a plane curve around a given point P is defined as W= (θf  – θi)/2π, where θf and θi 
are the final and initial angles the curve makes with respect to the x axis as measured from P. For closed 
curves, the winding number equals the number of full counterclockwise turns the curve makes around the 
point minus the total number of clockwise turns. Open curves yield fractional winding numbers. A simple 
method of numerically calculating the winding number at a given point may be obtained by drawing a 
line from the point in an arbitrary direction. The winding number equals the number of times the line 
intersects counter-clockwise segments of the curve minus the number of times it intersects clockwise-
oriented segments (see Figure 3(a)).  

 
The color figures in this paper were created by calculating the winding number at each pixel in the 

image and then applying a color palette. Color pallets vary from figure to figure based on aesthetic 
considerations. The muted palettes were chosen to focus attention on the spatial form of the curves rather 
than on color interactions. The computation time required to produce an image depends on the total arc 
length of the curve, but most images were constructed in less than a minute for a resolution of 4800x1600 
pixels. 

 

  
                                                                                                             

Figure 3:  (a) Numerical method of calculating the winding number at point P as described in 
the text. In this example the winding number is –2. (b) Non-intersecting curves colored by the 
winding number. Top panel:  one-frequency pattern with A1 =2.02, λ1 =1; Middle panel:  two-
frequency pattern with A1 =2.02, λ1 =1, A2 =0.47,  λ2=0.391; Bottom Panel:  three-frequency 

pattern with A1 =2.02, λ1 =1, A2 =0.47,  λ2=0.391, A3 =0.266, λ3 =0.288.  
 

(a) (b) 

P
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Two-Frequency Patterns 

 
Sine-generated curves with two frequency components have three independent parameters that effect the 
pattern shape:  A1, A2 and the ratio λ2/λ1: 
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Beats. The well-known phenomenon of beats results when the wavelengths are close: i.e., when λ2/λ1 ≈ 1. 
The beat wavelength is given by . Figure 4b shows the resulting curves when 
λ2/λ1=1.2. The corresponding beat wavelength is λ2 =6 λ1. Since the beat wavelength is evenly divisible by 
both λ1 and  λ2, the curves repeat exactly after each beat and the “tyranny of the repeat” reigns high.  
 

 

 
 In Figure 4(c) the wavelenth ratio is given by λ2 = 1.23 λ1. In this case, the beat wavelength is λB ≈ 
5.348 λ1, which is not divisible by λ2. The result is a pattern that exhibits variations on a theme. The 
design within each beat cycle evolves until the sequence returns to the original pattern. In this example, 
the curve repeats exactly after 23 beat cycles. 

1/ !B = 1/ !1 !1/ !2

Figure 4:  Two-frequency curves displaying beats. The left column shows the θ(s) curve with the θ = 0 
axis indicated. The right column shows the resulting Cartesian (x,y) pattern. The amplitude is 

A1=A2=π/2 for all the curves. The wavelength ratios λ2/λ1 for each pair are:  (a) 1, (b) 1.2, (c) 1.23,   
(d) 1.61, (e) 1.85, (f) 2 
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In general, the curves will be periodic if the wavelength ratio can be written as a rational number: 
!2 / !1 = n /m , where n and m are positive integers. The ratio of the repeat cycle sR to λ1 is given by  
sR / !1 = n / gcd n,m( ) , where gcd(n,m) is the greatest common divisor of n and m.  
 
 As the wavelength ratio increases much above unity, the beats merge together (see Figure 4(d)). 
Repeating forms are clearly visible, but the variation between beats blends into a unified pattern. When 
the wavelength ratio approaches two, a new beat pattern begins to emerge as λ2 beats against 2λ1.  The 
pattern develops large amplitude undulations (see Figure 4(e)). The beat wavelength is
1/ !2B = 2 / !2 !1/ !1 . When λ2 = 2 λ1, the beat wavelength becomes infinite and the pattern is periodic with 
a wavelength of λ2.  
 
Symmetrical Patterns. As discussed above, the sine-generated curve is periodic if the wavelengths λ1 
and λ2 are commensurate. Nearly periodic structures are also possible when the beat wavelength is close 
to an integer multiple of λ1 and λ2. The resulting periodic designs can exhibit a wide range of spatial 
forms. Two examples are shown in Figures 5 and 6. The figures are colored according to the local 
winding number. Visually, the dominant organizing principle of these patterns is symmetry rather than 
variation. Even though the sine-generated curves for these patterns contain very similar structural 
variations as the more organic patterns presented below, the large-scale organization of the variations in 
Figures 5 and 6 has a much higher level of symmetry and uniformity.  
 

 
Figure 5:  A two-frequency pattern (A1 =A2 =2.76, λ2/λ1 = 1.65) 

 

 
Figure 6:  A two-frequency pattern (A1 =0.7754, A2 =8.71, λ2 /λ1 =1.979) 
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Variations on a Theme. Figure 7 shows a two-frequency curve that contains a number of repeating 
forms (which remind the author of a series of abstract rabbits). This curve is reminiscent of a series of still 
frames in an Eadweard Muybridge study of animal locomotion—the forms appear to evolve and move 
almost as if they were animated. Like many of the patterns presented in this paper, the forms vary in 
shape along the curve creating a succession of variations on a common theme (for other examples see 
Figures 8 and 9). The spatial rhythms seen in many of the figures are created by the underlying 
wavelengths beating against each other. 
 
 One of the striking aspects of this system is how sensitive the sine-generated patterns are to subtle 
changes in the θ(s) equation. Small changes in the parameters can lead to surprisingly diverse, qualitative 
changes in the visual appearance of the resulting pattern.  
 
 

 
Figure 7: Two-frequency pattern (A1 = 0.7754, A2 = 9.3736, λ2 /λ1 =12.0881) 

 

 
Figure 8:  Two-frequency pattern (A1 = 0.7754, A2 = 5.81, λ2 /λ1 =3.72) 

 

 
 Figure 9:  Two-frequency pattern (A1 =1.93, A2 = 3.559, λ2 /λ1 =1.844)  
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Three-Frequency Patterns 
 
Sine-generated curves with three frequency components have five independent parameters that affect the 
pattern shape:  A1, A2, A3 and the ratios λ2/λ1 and λ3/λ1. The generating function is 

! s( ) = A1 sin
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As the number of frequency components increases, the sine-generated curves display a wider variety of 
forms. Periodic features present in a two-frequency pattern become modulated by the other frequencies, 
producing more complex forms (see Figures 10-13).  
 

Consider the sequence of one-, two- and three-frequency curves shown in Figure 3b. Each of the 18 
teardrop-shaped bends in the one-frequency pattern are identical. The resulting pattern has a high degree 
of symmetry (translational and reflection) allowing no variation between the forms. In the two-frequency 
pattern, the teardrops alternate between being elongated and more compact, although this alternation is 
also modulated by longer-period variations. The pattern almost repeats every nine teardrops, but not quite. 
The result is a more visually engaging image that has a kinetic quality as one’s eyes move back and forth 
between the forms. The three-frequency pattern nearly repeats on every eleventh teardrop, but, again, not 
quite. More complex repetitions are present in Figures 10-13.  
 

 
 Figure 10:  Three-frequency pattern (A1 =0.34, A2 =1.98, A3 =0.6, λ2 /λ1 =3.59, λ3 /λ1 = 1.245) 

 

 
 Figure 11:  Three-frequency pattern (A1 =0.57, A2 =2.72, A3 =0.9, λ2 /λ1 =1.805, λ3 /λ1 = 1.037) 
 

 
 Figure 12:  Three-frequency pattern (A1=0.691, A2=1.1686, A3=2.77, λ2/λ1=0.923, λ3/λ1=32.45) 
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 Figure 13:  Three-frequency pattern (A1=0.434, A2=0.812, A3=5.866, λ2/λ1=1.083, λ3/λ1=2.798) 

 
 

Conclusion 
 
Multi-frequency, sine-generated curves offer a rich environment for creating periodic and quasi-periodic 
spatial patterns. The patterns range from symmetrical forms to repeated shapes that evolve through a 
sequence of variations on a common theme. The variations invite comparison, feeding our innate 
tendency to look for common traits and structures. Some of the curves allude to figurative or “Dr. 
Seussian” shapes, introducing an element of humor and playfulness into an otherwise abstract 
investigation. While the curves under study were inspired by equations historically used to model river 
meanders, the patterns are presented more broadly as an abstract study of form. By including additional 
frequency components one might approach the level of irregularity seen in Figure 1. The use of natural 
coordinate systems for creating patterns in the plane is largely unexplored and has the potential to 
generate a seemingly unlimited variety of designs.  
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