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1. Abstract 

 
This paper looks at the sculptures that result from representing a group G of order 8 as a group of three 

dimensional transformations. The action is realized as a quotient of a full quadrilateral group and so all 

cells have four edges. We use tetrahedra to represent the regions and each cell is adjacent to four others. 

The model of this 3-manifold in space must have a boundary. These sculptures are dynamic in the sense 

that each cell on this boundary may be moved to another part of the boundary to give a different 

sculpture. 

 

2. Introduction 

 
The first portrait of a group was given in Burnside [1]. Burnside used inversions in a circle to represent 

group elements. Each transformation is a transformation of the entire plane, but we can keep track of 

these transformations by looking at the image of a region E. These images are always contained inside a 

circle which we identify with the Poincare Disk model of the hyperbolic plane. Each region is labeled 

with the composite of the transformations necessary to transform E to that region. Since inversion in a 

circle reverses the orientation of the plane, Burnside used a composition of two inversions for each 

element of the free group. The region E and any region 

obtained from E by an even number of inversions is a light 

color and any region obtained from E by an odd number of 

inversions is a dark color. A fundamental region for the group 

of transformations is the union of one light and one dark region. 

This pair of regions is labeled with the element of the free 

group that transforms the region E into that region. It has 

proven convenient to distort the two dimensional regions into 

polygons. This gives regions such as Figure 1, which is a 

polygonal region for a surface of genus five [2]. Each region on 

the boundary connects to another region on the boundary. 

These regions fold up to give a compact surface of a particular 

genus. Another nice property is that you can take a polygon 

from the boundary and relocate it elsewhere on the boundary. 

This leads to many nice plane designs. The purpose of this paper      Figure 1 – Polygonal representation of G+ 

is to explore a 3-dimensional example and to examine the sculptures that might arise from such a 

polyhedral representation. 
 

3. Three Dimensional Polyhedral Regions 

 
We propose to use tetrahedra for our first attempt at constructing a union of polyhedra that represent a 

group. Tetrahedral cells are fairly easy to construct and to move around to different configurations. 
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In order to facilitate this, our tetrahedra will have four colors on the faces. Each color represents the 

action of a different generator. The two dimensional polygonal regions in Figure 1 are not movable in this 

way, but it is easy to change a 2-D polygonal 

representation to make it look good. The big 

disadvantage of using tetrahedra is that the 

possible groups we can represent are very 

restricted. Each colored face of a tetrahedron 

represents an inversion transformation in a plane 

or sphere. As in the 2-dimensional case, the 

orientation preserving action of the generators of 

the group is represented by the composition of 

two such inversions. Unfortunately, five 

tetrahedra are all that can fit around a line. It 

follows that the order of the product of two 

inversions is at most two, since this would be 

represented by four tetrahedra around a line. It is 

easy to see that this forces the group to be

 Figure 2 – Polyhedral representation of Z2
3  elementary abelian. Since the group must have 

rank three, we see that G
+
 is the elementary abelian group of order 8 and G is the elementary abelian 

group of order 16.  

The model that we have constructed is the set of all three dimensional regions of the elementary 

abelian group of order 8, Z2
3
. Using Magma, we can write the four inversions as permutations of 16 

objects. These objects are the tetrahedra. The tetrahedra 

come in two varieties. One variety will be the original and 

have the same function as the yellow regions in Figure 1 

and the other variety will represent the orientation-reversed 

cells, similar to the purple regions in Figure 1. The two 

varieties will have similar colors with the orientation-

reversed cells a somewhat darker color. The solid that 

results from putting these tetrahedra together will have a 

boundary and each boundary cell will be connected to 

other cells on the boundary. We can see two configurations 

for this model in Figures 2 and 3. When this region is 

“folded”, it results in a three dimensional manifold which 

can only be embedded in a higher dimensional space.       Figure 3 – Preliminary polyhedral representation of Z2
3   

Clearly, we cannot see the three-dimensional manifolds that result from this work. These 

manifolds can be embedded in higher dimensional Euclidean space and we may use the vertices of the 

cells and project them onto two and three-dimensional spaces. This might give very interesting artistic 

objects. A more interesting possibility would be to construct a movie of a “trip” through this 3-

dimensional manifold and observe how it is folded on itself.  
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