Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture

From Path-Segment Tilesto Loops and L abyrinths

Robert Bosch, Sarah Fries, Maneka Puligandla, and Karssl&e
Dept. of Mathematics, Oberlin College, Oberlin, OH 44074
(bobb@cs.oberlin.edu)

Abstract

We explain how to use integer programs to assemble a calfeofipath-segment tiles—squares decorated with path
segments—on a grid so that the path segments join togetf@nta single closed loop or a single open path through
the centers of the squares of the grid. We describe how tong#i(maximize or minimize) the number of bends
(90-degree turns) in the loop or path. We show how to forcpdam be symmetric and to encourage paths to be
as close to symmetric as possible. We conclude by displdgsgr-cut and 3D-printed artwork designed with our
integer programs.

1 Introduction

Integer programs are mathematical optimization problam&hich the objective is to optimize (in some
cases, to maximize, and in others, to minimize) a lineartfan®f integer-valued variables subject to one or
more linear constraints (equations or inequalities) os¢hariables [10]. Since the 1960s, integer programs
have been applied with great frequency and success to pnelite the areas of logistics, manufacturing,
and scheduling, and in these applications, the objectiususilly to maximize profit or minimize cost [7].
For the last 12 years, Bosch and colleagues have conduetestigations into how integer programs can be
employed in the construction of visual artwork [1-6,9]. e fpresent article, we continue these explorations.
We focus on using integer programs to assemble a collectipath-segment tileglisplayed in Figure 1)
on a square grid so that the tiles’ path-segment decoratdrasvn in black) join together to form a closed
loop (a Hamiltonian cycle) or a labyrinth (a Hamiltonian ipathrough the centers of the squares of the
grid. We strive to produce aesthetically pleasing loopslahgrinths. To this end, we employ methods for
optimizing (maximizing or minimizing) the number of ben®0{degree turns) in the loop or labyrinth, for
forcing loops to be symmetric, and for encouraging labsro be as close to symmetric as possible.

2

5

r
.

NRN

9 I 10

Figure 1. Path-segment tiles.

119

Bosch et al.

2 Designing Loopswith Path-Segment Tiles

In this section, we describe how to use integer programsrémge copies of the path-segment tiles into a
loop (a Hamiltonian cycle) on am x n board (grid of squares). We require that a tile be placed il ea
square of the board, and we strive to maximize (or minimize)rtumber of bends (90-degree turns).

2.1 Variables

We setx ; j equal to 1 if we place a copy of tilein square(i, j), the rowt, column{ square of oumx n
board, and we se¢; ; equal to O if we don't do this. Note that there ararbvariables. (For loops, we can
restrict ourselves to tiles 1 through 6, s&1 <6,1<i<m,1<j<n.)

2.2 TheCoreConstraints

To force ourselves to place precisely one tile in sqyarg of our board, we impose the constraint

t_ixm =1 1)

We neednn such constraints—one for each square.

To force ourselves to place “compatible” tiles in squéirg) and its right hand neighbdi, j+1), we

impose the constraints

X1ij +X3i,j + X6 j = X2 j+1 +Xai j+1+ X5 j+1 (2)
and

X2i.j +Xaij+X6ij = Xvij+1+Xai j+1+ X6 j+1- 3)
Constraint (2) states that the number of tiles placed ingiig) that have the path segment exiting the right
side of squar€i, j) must be equal the number of tiles placed in squarpt1) that have the path segment
exiting the left side of squar@, j+1). Constraint (3) states that the number of tiles placed ias(is j) that
havenopath segment exiting the right side of squéirg) must be equal the number of tiles placed in square
(i, j+1) that haveno path segment exiting the left side of squéirg+1). We needn(n— 1) constraints of
each type—one for each square that has a right hand neighbor.

To force ourselves to place compatible tiles(inj) and its lower neighbofi+1, j), we impose the
constraints

Xyij +Xeij +Xejj = X3it+1,j T Xait1,j +X6it1,] (4)
and

X3jj +Xaij T X6 = Xij+1 X2 j+1 1 X6, j+1- (5)
We need m— 1)n constraints of each type—one for each square that has a feigitbor.

To keep the path from leaving the board, we simply set ceviiiables equal to 0 and then remove them
from the model. By settingz1j =X41,j =X6,1,j = 0 @andxymj = Xomj = Xsm,j = 0 for each 1< j <n, we
prevent the path from crossing either the top edge or theimotidge of the board. By settixgj 1 = X1 =
Xsi1 = 0andxyjn = X3jn = Xsj,n = 0 for each 1< i < m, we prevent the path from crossing either the left
edge or the right edge of the board.

2.3 Objective Function

If we want to find a loop that has as many (or as few) bends ashp@see maximize (or minimize)

4 m n

i 6
tZii: ,let”’ ©)

120

From Path-Segment Tiles to Loops and Labyrinths

2.4 Sub-loop Elimination Constraints

If we maximize (6) subject to the core constraints, we witl @p with a solution similar to the one displayed
in Figure 2.

mMMAammmmram
NN Ny NN pp 5N gy 5N gy 5 gy =S
mMMAammmmram
| [| d
mMMAammmmram
| [| d
[B BN B B ww BN o |
| [| d
mMMAammmmram
| [| d

Figure 2: 30 sub-loops on a 18 12 board.

This solution satisfies all of the core constraints, but is itcomposed of sub-loops. To eliminate sub-
loops, we adapt Dantzig, Fulkerson, and Johnson’s apptoastiving instances of the Traveling Salesman
Problem (TSP) [8]. In the TSP, when we encounter subtoursadeklinear inequalities to the model to
eliminate them. Here, to eliminate the top left sub-loop,add the linear inequality

X111+ X212+X321+Xa22 <2 (7)

to our model. This constraint states that we may use no marettto of the four tile placements that make
up the top left sub-loop. Note that if we were to use three effthur tile placements, the compatibility
constraints (constraints (2) through (5)) would force ugge all four of them.

To eliminate other sub-loops, we include constraints sini constraint (7). As in the case of the TSP,
we add our sub-loop elimination constraints as they areetked

2.5 Symmetry Constraints

If we want our loop to be symmetric, we can include constgathat force in the desired symmetry. For
example, if we want our 18 12 loop to have 180-degree rotational symmetry, we can digclu

X1i,j = X4,11-i,13— X2i,j = X3,11-i,13— | X3i,j = X2,11-i,13— |,
X4,) = X1,11-i,13— 5 X5i,j = X5,11-i,13— |, X6,i,j = X6,11—i,13— |

foralll<i<b5andall 1< j <12,

2.6 A Gallery of Loops

To date, we have used our integer programming model to ciieasands of loop designs. Figure 3 displays
three designs that have 180-degree rotational symmetop Bmhas 108 bends, the greatest number possible
for a 10x 12 loop with 180-degree rotational symmetry. There arersetieer 10x 12 loops that have 108
bends and 180-degree rotational symmetry. Once we havdiamabpolution, we can find additional optimal
solutions (and eventually suboptimal solutions) by ingtgdsub-loop elimination constraints to eliminate
the solutions we have already found.

Loop X has only 20 bends, the least number possible for & 18 loop with 180-degree rotational
symmetry. There are nine other A2 loops with 180-degree rotational symmetry that have @flpends.

121

Bosch et al.

Loop 3 has 68 bends. To produce this design, we employed speciatraionis to force in the interior
staircase structure.

1 | | 1 1. L 1 I I
| . | | | . | | . | I I | . | I I 1
1C 30 30 I
C3C 3C 3 e =
a3 L 30 30 ol F—r—1T17 ¢
CIC 30 3 — I =
1C 30 3cC e
L T I [T
| | | | m m 1
_J |__ __| | | | | |__ | Bl | | |

Figure 3: Three 10x 12 loops that have 180-degree rotational symmetry.

Figure 4 displays six designs that have horizontal mirrons,etry, vertical mirror symmetry, and 180-
degree rotational symmetry. By repeatedly adding sub-Eopination constraints to eliminate all previ-
ously obtained solutions, we discovered that there are 2@ loops. Loopdis one of 24 loops that have
100 bends, the greatest number possible for & 12 loop with these symmetries. Loog 4 one of eight
loops that have only 36 bends, the least number possible T6r<al2 loop with these symmetries. Loops
4b, 4c, 4d, and 4 have 84, 76, 60, and 52 bends, respectively. They are some tdworite designs.

| | M | | M | | | | M | | | | M | |
EESSIS gy SRS gy BESE Sy S g S g _1 l..| |..l L
mmliimm B mmdiienz B el el B8 mmdibems | r— ——
|.J l..| |..l Ir.| |..l E.| . rn Ll n L . .1 L
al 1 b 1L c C 1
1 [1.1 1. I© 15 1 [] 'l Ir I
i Ry SESSSEE gy HESSSSE gy B — - = -
| EESyy gy SEpen gy BRppss | EEie O Semps S -
mmliimn BE muliiens B mdiiens | = | = mn B s BN et B o=
1 | B | | B | | | | B | 1 | | B | 1
| M |
| I |
| M | | |
| B | | 1
| | M | | = =
pll Pt oy By 1
d 1L o o L AL
s gy S i el I adl =t s
— L . :
1 | B | | 1 |
| M | | |
| B | | 1
| M |
| B |

Figure4: Six 10x 12 loops that have horizontal mirror symmetry, verticalmorisymmetry, and 180-degree
rotational symmetry.

122

From Path-Segment Tiles to Loops and Labyrinths

2.7 Loopsin Physical Form

To get some sense of what it would be like to travel througlseéhleops, Robert Bosch made laser-cut
versions out of hardboard and MDF. The laser-cut loops capldsed atop a BRIO Labyrinth game, as
shown in the left half of Figure 5. The player can then turnghee’s knobs to tilt the board and maneuver
a steel ball through the loop.

EEohE

Figure 5: A laser-cut version of Loope&lleft) and a loop made out of 3D-printed tiles (right).

To be able to construetl/ loops (and labyrinths) that can be constructed from pagimsat tiles, Robert
and Derek Bosch designed a set of 3D-printed tiles showmglit Half of Figure 5. On one side of each tile,
there is a path segment (not drawn in black, but inset intdilddethat has a 90-degree bend. On the opposite
side, there is a path segment (again, inset into the til¢)gihes straight across.

3 Designing Labyrinthswith Path-Segment Tiles

In this section, we provide a sketch of how to modify the ietegrogram described in the previous section
so that it can be used to arrange copies of the path-segnemnintio a labyrinth (a Hamiltonian path) that
starts on a specified square on the edge of the board and eadspegified square in the interior.

L L JL] I
l L] 1 L
I 1 1 ™ Ir - - m |
mulll mel m= Bl | L .
1 — l"l l"l L I 1] I 1
- m | Ir | | il 1 1
g Bl W il e [=] gl
-1 1] 11 LC
11 Ir M r m | 1 I
[| I L L __l I L [| [| L

Figure 6: Three 12x 12 labyrinths.

123

Bosch et al.

For the three 12 12 labyrinth designs displayed in Figure 6, squdr2 6) is the start square and square
(7,6) is the end square. If we want the path to leave the start squarenter the end square through these
squares’ upper neighbors, we ggi>6 = X776 = 1 andx; ; = 0 for all 8<t < 10. Other than making some
small modifications to the instances of constraints (2)ugho(5) that involve squargd4.2,6) and(7,6), we
are able to leave the core constraints alone. As in the losp, @@ add sub-loop elimination constraints as

needed.

Figure7: Three 12x 12 labyrinths with (top) all instances of horizontal mirsymmetry shaded and marked

with white dots, (middle) all instances of vertical mirrgmsmetry shaded and marked with white dots, and
(bottom) all instances of 90-degree rotational symmetadskd and marked with black dots.

As it is impossible for a labyrinth with our chosen start and squares to be perfectly symmetric, we do
not include symmetry constraints. Instead of maximizingnamimizing the number of tiles with 90-degree
bends, we make it our goal to design labyrinths that will belase as possible to being symmetric.

124

From Path-Segment Tiles to Loops and Labyrinths

To measure closeness to horizontal mirror symmetry, wediize a binary variabll, ; j for each tilet
with 1 <t < 6 and each squarg, j) with 1 <i <m/2 and 1< j < n (each square in the top half of the
board). For each path-segment tilave letH (t) denote the image of tilein a horizontal mirror. Note that
H(1)=3,H(2) =4,H(3) =1,H(4) = 2,H(5) =5, andH(6) = 6. We then constrain the variatie; ; as
follows:

Xij tXHem—ij < 1+hj, 8
heij < i, 9)
Pij < Xdg)mei-ij- (10)

Inequality (8) forcedy; ; to equal 1 when botk j j andxy 1) m1-i,; €qual 1. Inequalities (9) and (10) force
Xij andXy) me1—ij to equal 1 whety ; ; equals 1. In other words, inequalities (8), (9), and (10)estlaat
the variableh; ; equals 1 if and only if tile and its imageH (t) are involved in aninstance of horizontal
mirror symmetrithat takes place in squarésj) and(nm4-1—i, j). In the top row of Figure 7, the squares that
have been shaded and marked with white dots are precisalg gyuares that house instances of horizontal
mirror symmetry. Labyrinthb has 128 such instances, while Labyrigthas 120 instances, and Labyrirgh
has only 74 instances.

To count instances of vertical mirror symmetry, we introglacbinary variable ; ; for each tilet with
1<t <6andeach squarg j) with 1 <i<mand 1< j <n/2 (each square in the left half of th board). For
eacht, we letV (t) denote the image of tilein a vertical mirror. Note tha¥ (1) =2,V (2) = 1,V(3) =4,
V(4) =3,V(5) =5, andV (6). We then constrain the variablg; ; with inequalities similar to (8), (9), and
(10). The middle row of Figure 7 shows the locations of ins&nof vertical mirror symmetry. Labyrinths
andc are the best in terms of vertical mirror symmetry, with 128amces, while Labyrinth is far behind
with only 76 instances.

To count instances of 90-degree rotational symmetry, wedlice a binary variablg ; ; for each tilet
with 1 <t < 6 and each squar@, j) with 1 <i <n/2 and 1< j < n/2 (each square in the top left quadrant
of the board). Here we are assuming thret n. For eaclt, we letR(t) denote the tile produced when tile
is rotated 90 degrees clockwise about its center. NoteRtigt= 2, R(2) = 4,R(3) = 1,R(4) = 3, R(5) = 6,
andR(6) = 5. We then constrain the varialig ; as follows:

3+ rt7i7j7
Xeijs

XR(t),j,n+1—i>

Xei,j T XR(t),j,n+1—i T XR(R()),n+1—i,n+1—) T XRR(R(t))),n+1—j.i
It
It

Mtij XR(R(t)),n+1—i,n+1—j>

VAN VAN VAN VAR VAN

Mtjij XR(R(R(t))),n+1—],i-

These inequalities state that the variaflg equals 1 if and only if tile and its rotationdx(t), R(R(t)), and
R(R(R(t))) are involved in an instance of 90-degree rotational symyrtétt takes place in squarésj),
(j,n+1—i), (n+1—i,n+1—]), and(n+1—j,i) (squar€i, j) and the three squares it rotates into). The bottom
row of Figure 7 shows the instances of 90-degree rotatioyrahsetry. Here, Labyrintla is the best, with
116 instances. Labyrinthhas 92 instances, and Labyririthas only 20 instances.

We produced Labyrintla by maximizing the sum of the ; j variables. By repeatedly adding sub-loop
elimination constraints to eliminate all previously obd solutions, we discovered that Labyriatis one
of 112 12x 12 labyrinths that have 116 instances of 90-degree rotdtisgmmetry, the highest number
possible.

To produce Labyrintlp, we maximized the sum d# ; j variablesandthev; ; variables. Labyrinttb is
one of more than four hundred %212 labyrinths than have a total horizontal/vertidal\) score of 256, the
highest number possible. We did not find all such labyrinthis.suspect that the number is very large.

125

Bosch et al.

To produce Labyrintte, we maximized the sum of thig ; ; variables, the ; ; variables, and the; ;
variables. Labyrinthc has a total horizontal/vertical/rotationah/\{/r) score of 340, the highest number
possible. Only one other 1212 labyrinth has a totdh/v/ir score of 340, and like Labyrinth it closely
resembles a classical Chartres-like labyrinth. Labyrmttas a totah/vir score of 276, and labyrinth has
a totalh/vir score of 266.

4 Conclusion

We have shown that integer programs can be used to arrangeply &if path-segment tiles into loops
(Hamiltonian cycles) and labyrinths (Hamiltonian pathgyhen designing loops with our model, the user
can include constraints that force in desired symmetrielscan use the objective function to find the loops
that have the most bends (or the least bends). When desigiiygnths, the user cannot force in symmetries,
but can strive for closeness to symmetry via an objectivetfan that counts instances of symmetries.

In other words, we have shown that integer programs can ke fosesearching through the set of all
loops and labyrinths. We can reduce the size of the sets lyding constraints that eliminate unwanted
elements (non-symmetric loops, for example). And througitchoice of an objective function, we can focus
our search in a desired direction (for example, towards bleady” portion of the set of loops or towards the
“almost rotationally symmetric” portion of the set of labyths).

We have not shown, nor have we attempted to show, that infgggrams are the best tool (abest
tool) for this task.

5 Acknowledgments

We thank the anonymous reviewers for their constructivdlfaek.

References

[1] R.A. Bosch, “Constructing domino portraits,” ifiribute to a Mathemagiciargd. B. Cipra et al.,
A K. Peters, 2004, 251-256.

[2] R.Bosch. Opt artMath Horizons February 2006, 6-9.

[3] R.Bosch. Edge-constrained tile mosaicsBhidges Donostia: mathematical connections in art, music,
and sciencgpages 351-360, 2007.

[4] R. Bosch. Connecting the dots: the ins and outs of TSP WriBridges Leeuwarden: mathematical
connections in art, music, and scienpages 235-242, 2008.

[5] R. Bosch. Simple-closed-curve sculptures of knots amkk| Journal of Mathematics and the Arts
4(2):57-71, 2010.

[6] R. Bosch and A. Pike. Map-colored mosaics. Bnidges Banff. mathematical connections in art,
music, and scien¢@ages 139-146, 2009.

[71 D.-S.Chen, R.G. Batson, and Y. Dangpplied Integer Programming: Modeling and Solutitiley,
2010.

[8] G. Dantzig, R. Fulkerson, and S. Johnson. Solution ofgelascale traveling-salesman proble@yp-
erations Researc:393-410, 1954.

[9] C.S.Kaplan and R. Bosch. Operations research in thalists. InWiley Encyclopedia of Operations
Research and Management Sciengéey, 2010.

[10] L. Wolsey,Integer ProgrammingNiley-Interscience, 1998.

126

