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Abstract

The Mercator projection is arguably the most fampragection in cartography and it has a long anefulshistory,
especially as a navigation tool. In the last cgnttire Mercator projection’s reputation has suffleaesetback. This
paper hopes to restore some of the projection'mdorglory by applying the Mercator projection tchepcal
content and the relatezbmplex logarithmfunction to planar content. We take advantagetofcylindrical and
conformal properties and we showcase the projéestiability to zoom through many orders of scaleneffly, we
show some related image manipulations such as tbet® effect, and a ne®onformal Spherical Stretching
operation by the first author that allows for a rdegree of freedom when composing spherical parasam

Introduction

In the 18" century, Gerardus Mercator invented the Mercatojeption (see Figure 1) to map a sphere
(typically our Earth) to a plane (a map). It wasidaed such that any line on the map would traee th
path of a ship keeping a constant compass bedimg.of the most notable features about Mercatotdwor
maps is that the features close to the poles gngfisantly scaled up compared to those at the equl

is the one that shows Greenland the size of Africa.

The Mercator projection is e
famous. For most of its history, the
Mercator map was widely used for
general reference and is a househol

name. It was so popular that it is ‘ :

still sometimes mistakenly used
generically as a term for any
projection. Many of us who grew up
in the 20th century remember it on
our wall.

But the Mercator projection is
infamous too. It is beyond debate Figyre1: Mapping the sphere to the plane with the Mercator
that the Mercator plot overstates the projection
areas of countries far from the
equator. In the 1960s, Arno Peters led a campagginat the Mercator projection and its politically
incorrect scaling. While there are some seriousvbagks with Peters’ proposed alternative, the
controversy served to gradually dethrone the Mercattojection as the go-to projection for wall maps
To cement the Mercator projection’s diminished wstatcartographers adopted a resolution “strongly
urging [mapmakers] to cease using rectangular wodg@s for general purposes or artistic display$” [1
The Mercator projection’s low standing is furthederscored by the xkcd comic in Figure 2.
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Now, if mapping a globe was all the Mercator
WHET YOUR FAVORITE projection ever had to do, that might be the end of
Mﬁp QQOJ'ECH ON the discussion. However, as projections do, it will

<Ave ABOUT YOU map any spherical imagery to a plane, not just the
continents of the Earth. In this paper we hopeie g
MERCPiTDR the Mercator projection a new lease on life by gsin

it to map spherical art and photography. We will

also adapt it to mapplanar imagery for artistic
purposes.

In the next section, we will discuss some of the
mathematical properties of the Mercator projection.
Following that, we show some artistic examples that
use the Mercator projection, paying special atbenti
to its ability to zoom in through many orders of
magnitude. Then, we show how this projection is
suitable for mapping visible spheres, specifically
high resolution digital panoramas. Finally we will
explore two other related image transformations: th
Droste effect, and a new Conformal Spherical
Stretching effect.

YOURE NOT REALLY INTD MAPS.
Figure 2: xkcd's view of the Mercator projection

Properties of the Mercator Projection

As a map projection, the Mercator is known for lgefhe projection with a lot of distortion, but iwad
important ways it is in factvithout distortion. By design, it iylindrical and it is conformal A
cylindrical projection is one that preserves otdgioh: North and South remain vertical and East and
West are horizontal. A conformal projection is dhat locally preserves angles. That is, if you l@bk
small enough features on the map (i.e., small eémdaggnore any change in scale), they will appear
correctly, without any shearing or non-uniform g&thing. These conditions are ideal for mapping
photography and art as the details of the mappextény will never be crooked, upside down, or
squashed/stretched into an unrecognizable streedd@dirs.

The Mercator projection is thenly cylindrical and conformal map. We can sketch ayuarent of
why this is here. For all cylindrical projectiongpints at longitudel are mapped directly to their
horizontal positiorx on the plane untouched. And a point’s verticalitgms y is a function of only its
latitudeg. Thus, cylindrical projections are distinguisheahi one another by this vertical function. Now,
if we require a cylindrical projection to be confaal, then any given spherical curve that crossks al
meridians at a constant angle (i.ethamb-lin@ must cross vertical lines in the plane at thimeangle
(only a straight line does this). Determining tmeque vertical stretch function that gives straighumb-
lines in the plane yields the Mercator projectidi; y) = f(1,4) = (A, In(tan@/4 + ¢/2))) with its inverse
being ¢,4) = (x, y) = (2tan’(e’) - #/2, x).

A little analysis will show that the magnitude ypfirows asymptotically ag approaches the poles.
This explains why a Mercator map is an infinitedngd strip that is always necessarily truncateti@top
and the bottom when on display.

We have defined the Mercator projection above asggdirectly from the sphere to an infinite strip
on the plane. An alternative but equivalent comsion takes two steps. First we project the spheian
intermediate plane using the standard stereograpbjection, which is conformal. In this paper, e’
refer to this plane as thlstereographic planeSecond, by equating the stereographic planestadimplex
plane, we can calculate the Mercator projectiothasimage of this plane under tbemplex logarithm
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function, which is everywhere conformal excepttet origin (with a branch cut); see Figure 3. Whb t
complex logarithni(z) = In(z), we now have a function to matanar imagery with many of the qualities
of the Mercator projection. Effectively, a compl@oint z with polar coordinatesp(d) is mapped

tof(2) = In(p) +i6. This yields ahorizontal strip, but we can get the standattical Mercator mapping

by rotating 90° afterwards, or equivalent{y) can be defined d&2) =iln(2).

Figure 3: The stereographic projection composed with the dexipgarithm function results in the
Mercator projection

Zooming

In the physical world, we don’'t see Mercator mapat textend infinitely far up or down. They are
cropped. It is easy to miss this point as Antaeciicshown as a strip of land along the bottom éalglee
same way that finite cylindrical projections shawBut we can ask, “What would the map look likevi
didn’t crop it so soon?” Figure 4(a) shows suchagpmand we encourage the reader to print a copyifén s
paper to use as a bookmark. As we look downwandartds the South Pole, we zoom into smaller and
smaller details, past the science station, untifee a snowflake that is centered at the SouthviAtieall

six arms pointing northward. But even in this case have cropped the map before seeing molecutés an
beyond.

This zooming and scaling quality of the Mercatomjection, which is the bane of some
cartographers, can be a boon for photographersudists. Here we have an interesting way to display
image that contains an increasing amount of deftaille zeroing in on a selected point of intereshiiy/
the Mercator projection zooms into the poles, fa¢ tomplex logarithm, the point of interest is la t
origin where details are blown up exponentially.

In 2004, and again in 2007, two collaborative adjgrts called Zoomquilt [2] and Zoomquilt 11 [3]
were created consisting of an interactive seriemafe patches, with each patch zooming in on Idetéi
the previous. Figure 4(b) and (c) show the unwrdppersions in one continuous strip. What this
Zoomquilt example highlights is that the Mercatoojection is an interesting way of saving multideca
zoom images as contrasted with the 88 separateeBrthgt were needed to represent the Zoomquitt 11 i
its standard zoom setup.

Of course when one thinks of math, art, and varyagls of zoom, fractals inevitably come to
mind. Figure 4(d) zooms in on one particular detdithe Mandelbrot set. You can see the repeated
horizontal motifs which correspond to some intengstotationally symmetric patterns that surrouhd t
point of interest. The Mandelbrot shape at theigdpe “standard” one while the one at the bott®ne
of its copies at a miniscule scale.

Our last example is taken from the short film “Peosvef Ten” by Ray and Charles Eames in 1977.
The film zooms both out to a cosmic scale, andia microscopic scale. Using stills from this filne
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have created Figure 4(e) which shows the Milky Vlathe top and a sea of quarks along the bottdm, al
in one image.

Figure4: a) The Mercator world map; and the comex lodaritfunction applied to b) Zoomquilt, c)
Zoomaquilt I, d) Mandelzoom, and e) Powers of 16rsfilm

An interesting property of rectangular images mappéth Mercator projections or complex
logarithms is that we can easily calculate the arhofizooming from their aspect ratios alone. Winge
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the zoom-depthof such images as the ratio between 14p1e1: The approximate zoom-depths of
the sizes of the innermost and outermost circlesnwh the various images in Figure 4

the image is projected back on the stereographie .

plane. The zoom-depth corresponds to the amount of Aspect Ratio Zoom-depth

zooming in that one would require to travel throughVorld map 0.200 4-4xf?
the Mercator image from top to bottom. If the imag&oomquilt 0.196 5.1x16
is H units high andV units wide, then it has an aspecZoomquilt II 0.107 1.4x19
rato of A=WH and the zoom-depth Mandelzoom 0.160 1.1x10
equalsf(A) = €. Table 1 shows the zoom-depth forpoyers of 10 0.078 6.4x%0

the images in Figure 4.

Mapping the Visible Sphere

Most of our examples so far have used planar inyad€here can we get interestisghericalimagery to
map? Let's consider one class of spherical imagds:visible sphere. Thesible spheres a virtual
sphere of imagery matching the solid-angular spasend an eye-point such as star charts, GoogtetStr
View, and digital panoramas stitched together fpmtos taken in every direction. Several paper$q@]
discuss artistic projections of visible spheresstJas digital cameras have enabled visible sphere
panoramas to become a common phenomenon, robatieraanounts such as GigaPan are making high
resolution gigapixel panoramas feasible. We hagepthrfect opportunity to showcase the high resmiuti

of these panoramas by applying the Mercator prigjedo them.

Before looking at our next example, let us quickijroduce thetransverseMercator projection,
which is just the Mercator projection applied sidg® (i.e., rather than the poles being stretchédiwo
opposite points on the equator will be); see Fidgure

Figure5: The transverse Mercator projection

The transverse Mercator image shown in Figure Si@hted out as a 97,736 pixel wide panorama
consisting of a narrow band close to the horizoptwad by Larry Paul at a marina in Long Beach
Figure 6 shows how the Mercator projection allowsaisee both the broad scope of an entire pangrama
and the high level of detail at two opposite pofth® trees and building top) at the same time.

Variations
Since the Mercator “strip” is in fact a cylindehétleft and right sides of the projection couldgheed

together), it is possible to transform any suchnclylcal image back to either the stereographiaglar
to the sphere (and then from the sphere on to #er @rojection). This basic concept is the sowfce
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Figure 6: a) A high resolution 360° panorama; b) points dknest are rotated to the poles; c) the
Mercator projection which zooms in on the pointintérest; d) artistically filled and cropped.

two variations on the Mercator map; the first vawia is accomplished by translating the Mercatopma
vertically, the second by combining a rotation argtale change.

Conformal Spherical Stretching. This transformation first maps a sphere to a phaite a Mercator
projection, it shifts the Mercator image verticallgnd then it re-projects back to the sphere. This
transformation is conformal, since all three staps conformal. The result is that the equator iftesh
downwards (say), increasing the relative size efrbrthern hemisphere, while still preserving asigle
See Figure 7(a). Even more interesting is to apiply transformation to achieve the stretching of a
different, non-polar point of the viewable sphdfer example, by rotating the sphere so that thet pudi
interest is at the pole, stretching the pole arie=d above, and then undoing the first rotatibris
possible to conformally distort an image in quitagtic ways as shown in Figure 7(b).
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Figure 7: Conformal Spherical Stretching: a) shift a Mercapoojection and then apply the inverse
to get back to the sphere; b) the transverse etpriva

The effect can be thought of as a M6bius transféonga class of functions on the complex plane)
under the inverse image of the Mercator projectinrihis paper, we would like to emphasize itsustats
a spherical transformation — especially for its asespherical imagery which can then undergo furthe
transformations such as equirectangular projectiomsimersive views.
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To see this conformal stretching in action, Fig@&reshows examples which emphasize some
elements and deemphasize others. Since theseomaasions are conformal, close inspection of the
resulting images will reveal little, while the oadireffect in an immersive viewer with a large fiedf
view will be delightfully destabilizing [5].

Fi greS: Two mes of Cforml Sphericl Strechingg@al equirectangularlmagn the left,
Conformally stretched equirectangular images onrtgbt. a) Cathédrale de Reims, conformal stretghif the
zenith, highlighting the vault. b) Picking bluebes, lateral conformal stretching

The Droste effect. The Droste effec6], is a fascinating conformal transformationtthiarns a planar
image into a spiral around the origin and was peoee by M. C. Escher in higrint Gallery. We mention

it here because the Droste effect, which can beraplished by relatively simple operations in Meotat
space, highlights the Mercator projection’s utility

Consider now, not a Mercator strip, but a tiledllercator rectangle forming a grid in the plane, so
that in addition to the two vertical sides, the tud the bottom are tileable as well. If we rotatel
stretch this grid such that the horizontal peritdiof the image is preserved then transforming track
to the stereographic plane will achieve the spafféct. Figure 9 demonstrates these operations: The
original image with a hole in the middle (d) is jeaied to (a), and copied vertically so that weehav
tileable rectangle (b). We can rotate this tilesaewn in (c) and project it back to get the finadult
in (f).

Conclusion

The Mercator projection and its close relative,abmplex logarithmic function, are far from new ahd
Mercator world map is (justifiably) in decline. tever, in a world with new technologies such agtalig
photography, immersive panorama viewers and gighpimages, and new mathematical ideas such as
conformal stretching and Droste spirals, therecaréinly exciting and fascinating artistic usestfese
functions yet to be discovered. We feel this wifit be the last time you will hear of the Mercator
projection.
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a)

Figure 9 TheDroste effect is accomplished by simple operationdercator space (a, b, c);, with their
corresponding effects shown in (d, e, f)
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