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Abstract,  

This paper considers a supporting role for poetry in the statement of numerical algorithms and 

termination conditions. While this has certainly been touched on elsewhere, the present work takes 

nonlinear optimization as a case-study and shows what can be done with quasi-haiku formulations of 

familiar computational methods and convergence criteria. 

 

Introduction 
 

I am indebted to Dr Clemency Montelle of the University of Canterbury, New Zealand for pointing out 

that verse forms were often employed in the propositions and expositions of early Indian mathematics [1].  

In such oral traditions, concise and memorable exposition of ideas was highly important [2].  On the other 

hand, since constraints of verse-forms might obscure some technical detail, it was usual for mathematical 

poetry to be accompanied by written commentary. In contemporary computational mathematics, the 

typical unit of concise exposition is the algorithm.  It too is usually accompanied by a commentary which 

may include an intuitive justification for the proposed technique together with supporting convergence 

theorems.  Is it possible that poetry could still have a role in enhancing bald algorithmic statements? 
 

     It is of course easy to debunk the notion of poetry as algorithm, perhaps by quoting the delightful 

imprecision of Carl Sandburg‟s „Arithmetic‟ [3] which includes the stanza 
 

If you take a number and double it and double it again then double 

it a few more times the number gets bigger and bigger and goes 

higher and higher and only arithmetic can tell you what the number 

is when you decide to quit doubling. 
 

or an anonymous limerick [4] that begins There was an old man who said “Do / Tell me how I should add 

two and two?”  Nevertheless I intend to explore relationships between poetry and algorithm with 

particular reference to nonlinear optimization, which is a mathematical discipline concerned with how to 

“do one‟s best”. It is assumed, of course, that best is measurable, as is it is when we want to do a task in 

minimum time or for minimum cost. 
 

Optimization. 
 

It has been claimed that everything is an optimization problem.  Many systems in nature have evolved 

(or been created) to function with minimum expenditure of energy.  Human beings often pursue a similar 

goal – although most of us operate by guesswork rather than by mathematics. And in so doing we will 

recognize that we are sometimes hindered by constraints imposed by nature and by other people in the 

form of physical laws, safety regulations or sheer human frailty.  
 

     Optimization comes into its own in science and engineering where well-founded mathematical models 

enable us to predict quite accurately what will happen if some variable is adjusted. Optimization can be 

less effective – to put it mildly – when human behaviour is involved.  “Optimal” financial decisions can 

let us down badly when models of risk prove much less trustworthy than Newton‟s laws for describing 

flight dynamics. (See for instance [5],[6] for a general survey of optimization and various applications.) 
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     Conventionally we pose optimization problems as minimizations – equivalent to seeking the lowest 

point on a hypersurface defined by some performance function. Iterative optimization algorithms 

approach a solution via a sequence of steadily improving approximations; and, if there are no constraints, 

then progress can be viewed as a systematic exploration of a mathematical landscape like the contour map 

in Figure 1 – where X marks the lowest point. This – already rather poetic – metaphor is now so 

embedded in the consciousness of optimization practitioners that it is hardly even thought of as imagery.  

                                            

    Figure 1            Figure 2 
 

       In reality we need to stretch our minds around a generalisation of Figure 1 into more than two 

dimensions.  We let x denote a point in such a space and h(x) is then the corresponding terrain surface 

height. We want to find the x that gives the lowest h(x). Our main difficulty is that only local information 

is available – we do not have an area map. It is as if we are walking on a hillside in thick mist. All we can 

see is the ground at our feet. How will we find the bottom of the valley? 
 

     An elementary tactic involves detecting the line of steepest slope and walking steadily in this direction 

until the ground flattens out.  It is then time for a re-orientation to find and follow a new steepest downhill 

direction. This is essentially the method of steepest descent.  If g(x) denotes the magnitude and direction 

of the surface gradient we may write the iterative scheme in mathematical notation as 

 

xk+1 = xk – αg(xk)   where α is chosen so that g(xk+1)
T
g(xk) = 0. 

 

The orthogonality condition is explained in [5].  We might convey the same idea more vividly as 
 

Steepest Descent 

Still the fog persists. 

Let the incline have its way 

and set your compass.

 

Keep taking footsteps 

until that first suspicion 

of an uphill slope 

 

then turn left or right, 

just one of many zig-zags. 

  Will it ever end? 
 

Note that the poetic statement is flexible and frank enough to acknowledge that the method often takes a 

zig-zag path (see Figure 2) that can be painfully slow to converge! To descend more rapidly on a curved 

path, we must move continuously at right angles to the contour lines and this involves solving a system of 

differential equations  
 

dx / dt = - g(x) 
 

with a high-order method or a very small step size. Both are computationally costly; and a compromise 

strategy is to restrict our radius of action and seek the direction that seems to promise the biggest descent. 

For this, we need information about the hillside‟s curvature which is contained in G(x), the Hessian 

matrix of second partial derivatives of h(x). We then seek  δxk to minimize δxk
T
g(xk) +  δxk

T
 G(xk)δxk 

subject to an upper limit on ||δxk||2. This can be done by choosing a suitable δt and solving 
 

(I + δt G(xk)) δxk = - δt g(xk).  
 

(While using both Hessian matrix and gradient vector we may murmur lines from Stanislaus Lem‟s „The 

Cyberiad‟ [7]: And every vector dreams of matrices./ Hark to the gentle gradient of the breeze.) 
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      A technique which searches within a steadily-expanding radius of exploration, as illustrated in Figures 

3 and 4, is usually known as a “trust-region” method [8].  By invoking this non-numeric idea of “trust,” 

optimization practitioners have allowed another element of metaphor to creep into their discourse. (And 

this is not the only metaphor to be found in the literature. An algorithm devised by M.J.D. Powell [8] is 

called the “dog-leg” method because of its resemblance to a golfing strategy.) 

                                                
           Figure 3            Figure 4 

 

 

      As noted already, trust region methods depend on curvature. This is much harder to deduce than slope 

which can be estimated by surface inspection.  Curvature resembles an emotion hidden behind the face of 

someone with whom we are starting a romance. In a quest for more intimacy, we must allow for rapid 

changes in the loved one‟s moods and advance cautiously so as not to lose ground already gained.   
 

Trust Region 

How far dare I go? 

I’ve a hunch what to expect 

but I might be wrong. 

 

I want to confess 

where my fancy’s heading but 

I must go gently

 

for to cause alarm 

would risk ending the affair 

before it’s started.
 

 

The trust region method‟s reliance on choosing apt values for the radius δt also echoes certain links 

between numerical scaling and emotion made by Auden in the poem „Numbers and Faces‟ [9]: 
 

The Kingdom of Number is all boundaries 

Which may be beautiful and must be true; 

To ask if it is big or small proclaims one 

The sort of lover who should stick to faces. 
 

Constrained optimization 
 

We now turn to methods for handling constraints in an optimization problem. When such limitations 

exist, it is as if a capricious hyper-landowner has erected fences on our hyper-landscape to thwart our 

instincts about where to go, as in Figure 5.   

                                              

     Figure 5                 Figure 6 
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If, for instance, we can only explore the interior of the triangle in Figure 5 then we can no longer reach 

the valley floor.  The best we can do is to peer over the fence at point G.    

     When we are confined within boundaries (not necessarily straight lines) defined by equations of the 

form ci(x) = 0 then the optimization problem can be written  
 

Minimize h(x)   subject to    ci(x) > 0,     i=1,…m. 

 

Any downhill search direction determined by the slope of h(x) must be prevented from leaving our so-

called feasible region.  If we regard each constraint as a barrier then a search direction must either bounce 

back from it or else slide along its length. The sideways sliding is called projection; and if ai is the normal 

vector to the constraint ci(x) then the projection of the gradient g(x) is [I – ai(ai
T
ai)

-1
ai

T
]g.  A typical 

search using projected gradients is shown in Figure 6 and can be described poetically by: 
 

Barrier 

You hit it, running. 

The dry-stone wall deflects you 

down its stubborn length

 

till the hillside tilt 

releases you – or else a 

second obstacle,

 

lurking in a dip, 

destroys more hope of getting 

where you want to be. 
 

 

Optimality conditions & termination 

Rules about where to stop are just as important as rules about how to search. After roaming on a virtual 

hillside we need to know when we have reached our goal.  The conditions at a constrained minimum 

mean that there must exist Lagrange multipliers λi , i = 1,...,m such that the function 
 

L(x, λ) = h(x) -  λ
T
c(x) 

 

has a stationary point.  This implies a kind of Mexican stand-off between function and constraints. There 

exists no move which both reduces h(x) and satisfies the constraints. Any downhill move also breaks a 

constraint; any move that stays within the constraints is an uphill one. Poetry can put this another way 
 

Optimality 

Keep the rules and lose: 

or win because you break them. 

Checkmate or stalemate? 

     The Lagrange multipliers – sometimes known as shadow prices or dual variables – are not simply 

mathematical conveniences. They tell how a solution might change if the constraints were relaxed. 

Specifically, if the i-th constraint boundary were “pushed outwards” to become ci(x) > -ε then we can 

predict that the optimal value of h will decrease by approximately λiε. 
 

Lagrange multipliers 

These are our shadows, 

dual personalities, 

who know what we don’t –

 

the consequence of 

pushing our boundaries or 

shrinking horizons. 

     We can also introduce extra quantities called slack variables, si , which  measure how far a solution is 

from the edges of the feasible region.  We can then formulate a constrained optimization problem as 
 

Minimize h(x)  subject to   ci(x) – si   = 0,   si  > 0,    i=1,…m. 
 

As a poetic definition of slack variables we can draw on a Biblical reference [10] and propose 
 

Slack variables 

Like those labourers 

outside the vineyard, they need 

opportunities.

 

They are positive: 

whatever the vacancy 

they’re equal to it. 
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     There is an intriguing symbiotic relationship between slack variables and Lagrange multipliers. For 

each constraint, either the corresponding slack variable must be zero or else the corresponding Lagrange 

multiplier must be zero.  Mathematically we write this as λisi =0; more poetically 
 

Complementarity 

Face it: one must go. 

This town just ain’t big enough 

for the both of us. 
 

Spurious convergence 
 

Regrettably, the convergence tests above may not tell the whole story because they are only first order 

conditions. We neglect second derivatives at our peril for, without them, we cannot detect those false 

friends called saddle points. These can seem optimal when looked at in one way, yet they are unmasked 

as deceivers and tricksters when seen from another angle.  One is lurking around point Y in Figure 5: the 

values on the contour lines show that, when approached from the north-east, Y looks like a low point of 

the terrain – but if we move away from Y to the north west or south-east the ground falls away again. We 

could express this by saying the Hessian matrix G is non positive definite at Y – i.e. z
T
Gz is not positive 

for all z.  But perhaps the following is more compelling? 
 

Saddle point 

You thought you’d arrived 

till the valley arched its back  

like a startled cat. 

     There are other unsatisfactory places for an optimization algorithm to terminate. The point L in Figure 

5 has all the characteristics of an optimum – i.e., no locally feasible move away from L can reduce the 

function. And yet, because it has a higher value of h(x), it is inferior to point G which is the global 

minimum. The saddle point at Y is what separates the best point G from the merely rather good one at L. 

But we cannot tell, from information available at L, that the better point G even exists!  
 

Global solution 

It’s the only place 

to be – if you can find it. 

(If not, you won’t know.) 
 

     False convergence is a stressful possibility for numerical analysts and it has caused several of them to 

resort to poetry as a way of channelling the associated emotion. In their optimization text-book, Gill & 

Murray [11] offer an incomplete – and slightly flawed – Lennon-McCartney haiku [12] (rather like a 

Sappho fragment) as a poignant epigraph to their chapter on error detection: You can get it wrong / and 

still you think that it’s all right. Strangely enough, however, they fail to quote the readily available, 

reassuring and syllabically correct concluding line We can work it out. 
 

In their more specialised text, Broyden & Vespucci [13] borrow imaginatively from Eliot‟s „The Hollow 

Men‟ [14] and distinguish iterations which are converging rapidly from those that are stagnating by  

assigning subscripts b („bang‟) and w („whimper‟). 
 

     Poets who are not mathematicians seem instinctively to understand the anguish caused by spurious 

solutions as well as the pleasure given by correct ones. Here is Carl Sandburg again from „Arithmetic‟ [3] 
 

Arithmetic is where the answer is right and everything is nice and 

you can look out of the window and see blue sky – or the answer is 

wrong and you have to start all over and try again and see how it 

comes out this time. 
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Concluding reflections 
 

Writers of optimization algorithms aspire not only to finding solutions but to doing so quickly and 

efficiently. Hence they become quite competitive and are often “done-to as they do,” being under 

continual scrutiny regarding whose optimization algorithm is currently the best.  Sections of the literature 

resemble arenas for numerical duels to determine whose algorithm can solve the hardest problems fastest.  

Rivalries emerge as intense as that between Newton and Leibniz, commemorated in the Sarah Glaz poem 

„Calculus‟ [15], over whether a derivative should be evaluated by Newton's fluxions method, Δy/Δx; / or 

by a formal quotient of differentials dy/dx 
 

      Poets, of course, are subject to similar evaluation, both formally through major international 

competitions, and informally in the gossip about who‟s „in‟ and who‟s „out.‟ But while rivalries over 

algorithm performance and reputation may be as keen as any which exist between parallel contenders for 

the T.S. Eliot prize, optimizers and poets may also have something in common within their nobler natures 

–  namely a wish to express their deep belief that the world can be improved. If this is so then they will 

also share a wish for the world to take some notice of them!  For poets at least, this wish is commonly 

ungranted; hence poets may remain unacknowledged optimizers of the world; and – unless algorithmic 

verse becomes more popular – optimizers will be among the world‟s unacknowledged poets. 
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