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Abstract
I have constructed for comparison two sets of computer models of the icosahedron, dodecahedron and 
icosidodecahedron using 3D modeling software. One set  uses coordinates  attributed to Hess  [1] and the other fits 
within  a unit  radius  circumsphere.  Each polyhedrons’  sets of vertices, edges, faces, bounding boxes, polysurface 
and circumsphere are constructed upon named layers that can be turned on or off within a tree of layers.  These 
trees of data constitute the Taublock and the Uniblock.  Three copies of each block are scaled  proportional to a 
golden ratio geometric series: τau, 1, 1/τau.  These triads are used to populate turntable animations with varying 
display parameters for visual effect.  With apparent motion and programmatic selection of layers and display 
attributes these objects, alone and in combination, provide for many visual surprises such as retrograde rotation 
illusions and the appearance of phantom faceted polyhedra.

Introduction.  I think of polyhedra as the elements of design.  For years I have used polyhedra to hone 
my skills with computer aided design and drafting programs (CAD).  In this project I produce turntable 
animations with unusual visual effects using unit radius circumsphere models (Figure 1) and models 
nuanced by their dependance on the golden ratio (Figure 2).  I have also included for continuity with 
Bridges past, a comparison (Figure 8) of the spline curves, cyclons [2] that these figures produce.

Figure 1 Uniblock in 3 views aligned to an icosahedron’s: mid-edge, vertex and mid-face (left to right).

Figure 2: Taublock in 3 views.

Block Construction.  Using Rhinoceros software I have built  a model consisting of three polyhedra, the 
icosahedron, dodecahedron and icosidodecahedron using coordinates reported by Coxeter [1] as (x,y,z) 
triples of easy-to-remember values: 0, ±1, ±τ, ±1/τ (c.f. Table 1).  The golden ratio, τau = (1+√5)/2 or 
1.618... is elsewhere reported as phi 𝜑 (the great Tau-Phi pull!).  By calculating the coordinate triples it 
was easy to convert  the coordinates to a table of comma-separated string values that could be copied and 
pasted into Rhinoceros’ point command.  Then it  was a simple matter to connect  the dots with polylines 
and surfaces to complete very accurate models.  In previous models I used techniques that  required many 
translations and rotations which introduced rounding errors that  would regularly prevent surfaces from 
combining into solids.  This new method of constructing these polyhedra is clearly superior.
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Uniblock / Taublock.  The main difference between these two assemblies is that  within the Uniblock 
each polyhedron interpenetrates the others.  In the Taublock the dodecahedron is wholly enclosed by the 
icosidodecahedron.  Though each block contains the same polyhedra, the variant circumsphere radii in the 
Taublock aligns certain features; imparting a visual simplicity to 2D representations of the Hess 
coordinates.  By forcing the polyhedra into a unit sphere the Uniblock is unnecessarily complicated.

Triad Construction.  To add depth to the subject  of these animations I copied and scaled both the 
Taublock and Uniblock recursively around their respective origins using a geometric series of the golden 
ratio: τ1, τ0, τ-1.  If it were not for transparency only the outer layer of these assemblies would be visible.  
With transparency an infinite regress is implied (Figures 3 and 4).

Figure 3: Uniblock triads.

Figure 4: Taublock triads.

Animations.  Working with symmetrical 3D objects on 2D screens is fraught  with visual difficulties.  
Despite years of experience, I often think I am working with elements in the foreground only to discover 
I’ve attached objects to the backside.  During model construction I am forever nudging and rotating the 
view to get  a better angle on the data displayed.  For a CAD operator movement of the scene provides 
extra clues as to foreground and background, enabling more accurate manipulation of one’s model.  When 
presenting one’s CAD work, turntable animations are effective, quick to render.  Sometimes with 
surprising results

 For reasons explained below in the Rendering section, the animations I have created for this project 
use default lighting schemes with display modes that permit real time or near realtime results at  a rate of 
over 4000 high definition (1920x1080) images an hour.  Each animation is created in one of 3 named 
views corresponding to the axes of symmetry of the icosahedron: IcosaMidEdgeNormal, 
IcosaMidFaceNormal and IcosaVertexNormal.  Each animation records in 2D, a representation of a 3D 
assemblage in rotation about the y-axis of the selected view.

Rendering.  Rhinoceros is supplied with several display modes including: wireframe, shaded, ghosted, 
and rendered.  Also Rhinoceros supports a sophisticated ray trace plug-in, Flamingo, which can produce 
very realistic images, if you are willing to take the time to set up a scene with light  sources and go have 
coffee (or a vacation) while your machine crunches the numbers.  Placing light  sources in one’s model 
with Flamingo is problematic.  I have had limited success with it  because of the temporal disconnect  from 
setting the lights in the scene and waiting for the rendered results.  My use of transparency as a material 
property obfuscates lighting the scene as well.  Perhaps next generation 3D displays and physics engines 
will allow more realism in future work.
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Illusions.  Of course, every pattern of light and shadow that we interpret while watching our screens is an 
illusion, dependent  upon ‘persistence of vision’.  Painters and other visual artists exploit  other visual cues 
in their work to deceive the eye (trompe l’oeil): perspective, atmospheric bluing, occultation, and scale 
(larger in the foreground than the background).  What  seems to be happening in my project’s context is 
akin to the ‘face mask illusion’ wherein a rotating face mask with both concave and convex aspects is 
interpreted only as convex (interestingly schizophrenics are not fooled).  In the face mask illusion the play 
of light and shadow confuse the brain and we default  to the ‘I see a face like the ones I’m used to!’ mode 
of seeing.

 Another link to the face mask illusion is in the word polyhedron itself.  Hedron  derives from the 
Greek for face.  With transparency, both concave and convex views of the subject polyhedron are visible 
at  the same time, although with differing luminosities.  An amusing aside, I use iPhoto to catalog my 
geometric images.  When I turned on iPhoto’s face recognition feature, many of my pictures were flagged 
as having faces to be identified.

 Without  witnessing my animations you will just have to believe me that these illusions exist.  Some 
people with whom I have shared these movies do not acknowledge having seen them.  The motion 
illusion I am reporting may be entirely a figment  of visual cortexes like mine that seem to give 
precedence in the scene to regions of higher luminosity.

 The default  lighting routines of Rhinoceros and its interpretation of transparency result in back faces 
being brighter than front  (Figure 5).  Despite these faces being in the background and appropriately 
smaller, my eyes fixate on them when interpreting the scene making them pop to the foreground.

Figure 5: Icosahedron with transparency.  The small bright triangle is the rear face of the icosahedron.

 The phantom faceted polyhedra appear when multiple polyhedra are displayed (Figure 6).  Here an 
icosahedron and dodecahedron with common circumsphere interpenetrate.  It reminds me of looking into 
a geode.  This phantom polyhedron is the core of the two parent  solids.  Here the pentagons are sections 
of the dodecahedron’s faces surrounded by 5 irregular hexagons that  are part of the icosahedron’s faces.  
This core is produced by the boolean intersection of the icosahedron and dodecahedron (Figure 7).

Figure 6: Icosahedron and Dodecahedron and phantom Hex Pent polyhedron.
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Figure 7: Boolean intersection of Icosahedron and Dodecahedron.

Conclusion.  I began using computers to model polyhedra in 1973 when I wrote a program to generate 
geodesic dome coordinates with no graphical output, only numbers.  Forty years later with lots of 
experience with graphical user interfaces I have returned to an appreciation of the simplicity of starting 
with the numbers.  There is a poetry to Hess’s coordinates. (Table 1).  These visual artifacts and these 
illusions are eye candy, if you will.  They seem to be why I keep clicking away in front of my screens.

X Y Z
0 ±τ ±1
±1 0 ±τ
±τ ±1 0

Table 1: Icosahedral coordinates using the golden ratio.

Figure 8.  Cyclons [2] of the Uniblock (top) and Taublock.
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