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Abstract 

The title of the workshop is a twist on a question posed by mathematician Mark Kac in a 1966 paper, “Can One 
Hear the Shape of a Drum?” In the “Hearing the Drum of the Rhythm” workshop, the presenters will use music 
rhythms to model and think about the low end of the frequency spectrum for a circular membrane. This interactive, 
experiential workshop seeks to demonstrate the potential of the use of music to build intuitions about deep 
mathematical questions and of the value of music in providing “aural representations” of these ideas. 

 
Introduction 

In 1966 mathematician Mark Kac posed the question “Can one hear the shape of a drum?” in a paper by 
the same title [1]. Essentially, Kac asks in an intuitive manner if we can infer the shape of a vibrating 
membrane (such as a drumhead) given knowledge of all the frequencies at which the membrane vibrates. 
In mathematical terms, the natural frequencies of an object can be determined by the eigenvalues of the 
Laplace operator. Using these eigenvalues to determine the shape of a vibrating membrane is a rich area 
of research, with applications to fields as varied as number theory, statistics, geophysics, medicine, and 
thermodynamics, amongst others. Investigations into the properties of vibrating membranes, including 
those such as “fractal drums” and “hyperbolic drums”, have led to interesting insights [2] [3]. 

Prior to the question posed by Kac, it had been determined mathematically that one can “hear” a 
drum’s area. In 1991, mathematicians Gordon, Webb and Wolpert identified two “drums” that have equal 
areas and perimeters but different geometrical shapes [4]. They proved that the drums, each a multisided 
polygon, display identical spectra. Since this discovery, Gordon et al and others have provided further 
examples of isospectral (sound-alike) drums with different shapes [5] [6]. 

Unsurprisingly, the shape of a drum question resonates (almost no pun intended) with musicians – 
particularly, percussionists, of course - and others who work with sound production and analysis. The 
various points of entry to the question and various twists to the question suggest many possibilities for 
interesting collaborations,1 as well as providing multiple opportunities for engaging learners of STEM – 
at different levels – around a deep and very active research area. Indeed, the richness and embedded 
complexity of the question and its variations hold the potential for sustained inquiry and investigation, 
along pathways that can lead to STEM engagement at the highest levels, including active research. 
Furthermore, given the near ubiquity of drums throughout the world, anchoring investigations around “the 
drum” opens up many avenues for making authentic cultural connections, across levels of conceptual 
depth and complexity. 

In the “Hearing the Drum of the Rhythm” workshop, the presenters will use music rhythm - in 
particular, rhythms comprised of combinations of pulses - to model and think about the low end of the 

                                            
1 The present collaboration of the authors of this paper is a case in point. We anticipate a long lasting collaboration 
involving interdisciplinary education, research and performance. 
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Laplace eigenvalue spectrum for circular membranes. The purpose of this interactive, experiential 
workshop is to demonstrate the potential of the use of music to build intuitions about deep mathematical 
questions and of the value of music in providing “aural representations” of these ideas. 

The sequence of activities below is designed to facilitate participants making connections between 
music pulses and music tones and using this understanding to determine a drum’s diameter. The 
presenters will model a process for providing STEM (science, technology, engineering and mathematics) 
learners, of varying levels of preparation, access to an active STEM research area. At a more fundamental 
level, the presenters are reinforcing a paradigm lying at the heart of the Bridges conference, a STEAM 
(science, technology, engineering, art, mathematics) paradigm. 

The activities are described in enough detail to allow for easy replication by others. Sound files and 
slides referenced in this paper are accessible at http://math.mit.edu/~tblackman/bridges2013. 

 

Activity One – Hearing the shape of a drum 
In laying a foundation for the investigation, there is value in making a connection between real drums and 
the mathematical, idealized versions of these drums referred to in Kac’s question. Strike a variety of 
drums hidden from view. Discuss the question, “What can you say about the drums that you heard?” In 
addition to speculations about the sizes and shapes of the various drums, participants might make mention 
of the tension of the drum skins, about the placement of the strikes, and so on. In order to make the shape 
of the drum(head) salient, these various other features are not considered, which also makes the 
mathematics of hearing the shape of a drum more manageable. 

One could say that hearing the shape of a drum involves having abstract ears able to hear an infinite 
spectrum of frequencies. Hearing shapes uniquely would require no two different shapes having the same 
frequency spectrum, since if two differently shaped drums shared the same frequency spectrum, you 
wouldn’t be able to know for certain which was which. 

Show a slide (Figure 1) of isospectral drums found by Gordon, Webb and Wolpert in 1991. Mention 
that the two sound-alike drums identified by Gordon, Webb and Wolpert have different shapes, but they 
have the same area and perimeter. Note that simply finding shapes with the same area and perimeter does 
not guarantee isospectrality. 

 

 
Figure 1: Two isospectral drums that have different shapes 

 
 “Hearing the drum of the rhythm” involves hearing the area of circular drum membranes. 

Participants will be using rhythms formed by combinations of pulses to model information at the low end 
of the frequency spectrum for these drums and to think about the relationship between the fundamental 
frequency and the size of a circular membrane. These concrete experiences help to develop a feel for 
some of the more abstract ideas embedded in Kac’s question and its variations. 
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Activity Two – Hearing Frequency 
In this activity, the group is encouraged to consider different ways of thinking about frequency and sound. 

Begin with the question, “What comes to mind when you think about frequency?” Record 
participants’ responses – on whiteboard, chart paper, or electronically. Use their responses to settle upon 
working definitions for frequency and cycle. 

For example, some provisional definitions are: Frequency is the number of occurrences of a 
repeating event per unit of time. Cycle refers to one occurrence of a repeating event. 

Frequency, cycle and period are some of the properties involved in talking about sound. For example, 
when we hear the note A above middle C on the piano, we are experiencing a sound event that occurs at 
440 cycles per second.  

Play Sound File #1 (A 440 Hz) and ask, “What cycle is being repeated 440 times per second?” Play 
Sound Files # 2 - #5 (220 Hz, 880 Hz, 110 Hz, 55 Hz). Since it isn’t possible to count cycles that occur at 
this rate, it might be helpful to work at the level of sound that we perceive rhythmically. We can use beats 
per second as a way of modeling cycles per second. We can use drum to play with this idea. In doing so, 
we can think in terms of each beat marking the beginning of a cycle. So, for example, playing one beat 
per second would represent one cycle per second. 

Demonstrate and have volunteers demonstrate playing the drum at different rates (1, 2, 3, 
…beats/second). Below is a chart of the note A, played at different octaves. 

 
Note Frequency 
A1 55 Hz (cycles per second) 
A2 110 Hz 
A3 220 Hz 
A4 440 Hz 
A5 880 Hz 
A6 1760 Hz 

 

Ask the group what pattern(s) they notice. (Going up or down an octave doubles or halves the 
frequency.) Typically, we are unable to hear frequencies below 20 Hz, one reason why it can be helpful to 
model lower frequencies with rhythmic sound. So, for our purposes, we can consider playing 7 beats per 
second on the drum as a close representation of a lower octave of the note A. 

Ask what it would sound like if someone were able to play the drum 440 beats per second. Play 
Sound File #6 (recording of drum beat starting slow and gradually speeding up to 440 beats per second). 
Make connections between music intervals (combinations of tones) and pulses played in combination. For 
example, there is a correspondence between two tones in a 3:2 frequency relationship (a so-called “perfect 
fifth”) and pulses played in a 3:2 relationship. Have the group experience hearing/playing different 
combinations of pulses. This will help with understanding relationships between the natural frequencies 
of a string. 

 

Activity Three – Hearing the String of a Rhythm 
In this activity: (1) participants begin to explore natural frequency as it occurs in the one-dimensional 

case of strings, (2) use rhythm (a combination of pulse beats) played on percussion instruments to model 
a fundamental frequency and first few overtones, and (3) use this information to determine (the length of) 
the string of the rhythm. 
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The one-dimensional analogue to a vibrating membrane with a stationary boundary is a vibrating 
string with fixed ends. Similar vibrational phenomena occur in both the drum and the string. When 
objects are struck, plucked or given some other impulse they vibrate in ways particular to the object. 
These states of vibration are known as the natural frequencies of the object. 

Below (Figure 2) is a chart that shows the ratios of the beginning natural frequencies of a string. The 
sequence of natural frequencies is referred to as the fundamental and its overtones. 

 

 
Figure 2: Natural frequencies of a string 

 

Ask the group what they notice about relationships between the different frequencies. Responses 
might include observations about the shapes of the vibrations, and, perhaps, references to sine waves. As 
well, participants might notice the pattern of the higher and higher number of divisions of the string. 

Acknowledge the various responses and call particular attention to the pattern of overtones arising 
from divisions of the string into 2, 3, 4, … parts. Explain that the frequencies of an actual string (such as a 
guitar string, for example) depend upon the length of the string, the tension applied to it and its linear 
density. However, for all strings, the fundamental and overtones are in the same ratio relationships. This 
series of natural frequencies is also referred to as the normal modes of a vibrating string. 

Have the group experiment with using percussion instruments to play combinations of pulses in 
some of the ratio relationships of the vibrating string’s normal modes. Play Sound File #7, representing 
the fundamental and overtones shown in the figure above. 

Refer to a slide of the wave equation for vibrating strings, where if u(x,t) is the displacement of the 
point x on a string at time t, 

𝜕!𝑢
𝜕𝑡!

= 𝑘
𝜕!𝑢
𝜕𝑥!

 

𝑢 = 0  on the string's endpoints 
 

Explain that using a differential equation solution approach known as separation of variables, this 
becomes an eigenvalue problem. The infinite set of eigenvalue solutions is referred to as the eigenvalue 
spectrum; the eigenvalues are the squares of the string’s natural frequencies. Remind participants that the 
nature of the workshop is more about developing intuitions about some of the fundamental ideas versus 
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an in-depth exploration of the formal mathematics. Nonetheless, note the remarkability of being able to 
represent beautiful aural and visual patterns through the language of mathematics, which, hopefully, 
provides motivation for unpacking the meaning and significance of these symbolic representations. 

The formula for finding the natural frequencies of a vibrating string is: 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =   
𝑎𝑛
2𝐿
   

 
(where a is the velocity of sound waves traveling through the string). Work through the following 
example of using a fundamental frequency to determine the length of a “guitar” string. 

Finding the length of a guitar string 

The fundamental frequency of the G-string on a guitar is 196 Hz. Given a =255 m/s in the formula, find L, 
the length of the vibrating portion of the string. 

Finding the string of the rhythm 

Play Sound File #7, a recording of a combination of pulses. The recording includes pulses that represent 
the fundamental and first few overtones for a string. Ask, “What is the length of the string that would 
have this fundamental frequency?” Let participants work in teams to answer this question, which involves 
listening for the slowest pulse and determining its frequency in order to solve the problem.  

 

Activity Four - Hearing the drum of the rhythm 
In this culminating activity, participants consider natural frequency as it occurs in the two-dimensional 
case of circular membranes, use rhythm (a combination of pulse beats) played on percussion instruments 
to model the fundamental frequency along with some of the other normal modes, and use this information 
to determine (the diameter of) the drum of the rhythm. 

 

 
Figure 3: Normal modes of a circular membrane (from 
http://homepages.ius.edu/kforinas/S/Percussion.html) 
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Show a slide of Figure 3, a chart of the first 8 normal modes of a vibrating circular membrane. 

Explain that these are the first eight modes of a vibrating circular membrane that is fixed at the 
boundary. Call the group’s attention to the frequency relationships of the various modes and ask how 
these relationships compare with those of a vibrating string. (More than likely, participants will note that 
unlike the fundamental and overtones of a string, the modes of a circular membrane are in non-integer 
ratio relationships. Ask participants how they think this might affect the sound of a drum.) 

Ask for volunteers to make attempts at playing percussion instruments that approximate the ratio 
relationships of different combinations of modes. Explain the mode numbers that are given above each 
image, represented in the form (d,c) where d is the number of nodal diameters and c is the number of 
nodal circles. Note that the different shades indicate that the shaded areas are moving in opposite 
directions. Play animations of some of the modes, for example those found at 
http://www.acs.psu.edu/drussell/demos/membranecircle/circle.html. 

Show a slide of the two-dimensional wave equation, where if u(x,y,t) is the displacement of a point 
(x,y) on a membrane D at time t, 

𝜕!𝑢
𝜕𝑡!

= ∆𝑢  in D 

𝑢 = 0  on the boundary of D 
 

Mention that the solution to this equation for circular membranes involves a class of functions, 
Bessel functions, which have a variety of applications in mathematics, physic and engineering. 

Show a slide of the formula for finding the fundamental mode of a circular membrane.  

𝑓! ≈   
2.405
2𝜋𝑎

𝑣   ≈   
0.766
𝑑

𝑣 
 
(where a is the radius of the membrane and v is the velocity at which sound travels through the 
membrane). Provide the following example of using a fundamental frequency to determine the diameter 
of a “djembe” drum. 

Finding the diameter of a drum 

The fundamental frequency of a djembe drum was found to be 350 Hz 
(http://www.drums.org/djembefaq/v20a.htm). Given v =155 m/s in the formula, find D, the diameter of 
the djembe. (D is approximately .34 m.) 

 

 
Figure 4: A djembe drum from Mali 
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Finding the drum of the rhythm 

Play Sound File 8, a recording of a combination of pulses. State that the recording includes pulses that 
represent the fundamental and first few modes for a djembe drum. Ask, “What is the diameter of the 
drumhead that would have this fundamental frequency?” Let participants work in teams to answer this 
question, which involves listening for the slowest pulse and determining its frequency in order to get the 
necessary information to solve the problem. 

 

Conclusion and Implications 
The aim of this workshop is to provide an engaging entry, suitable for learners at different levels of 
preparation, into a rich area of mathematics and science research. As an introduction, the expectations are 
modest with respect to how much and how deeply the content of spectral geometry can be covered. 
Nonetheless, we do seek to model practices that encourage the type of creative inquiry that leads to depth 
of thought and inquisitiveness about the ideas being explored. Our experience tells us that asking 
questions in novel ways creates opportunities for new learning, wherever one is placed upon a spectrum 
of understanding. “Can one hear the shape of drum?” was a novel way of asking a (set of) question(s) 
about sound (as eigenvalues to be heard by those who can hear infinity) and shape (in Euclidean space as 
well as spaces that can only be accessed by the most adept shape-shifters). In hearing the drum of the 
rhythm we seek to raise questions about rhythm, tone, frequency, and drums, including those that have 
never been heard before, except in the mind’s ear. Our hope is that participants will arrive at a place 
where we, the authors, find ourselves – with more questions than we started, not the type that take us 
around in circles (unless they are circular membranes!) but those that point in the directions of exciting 
paths of discovery. 

Follow-up experiences we envision to this workshop include devoting time to unpacking the wave 
equation for a string and for a membrane. This would entail demystifying the symbolic representations 
and taking time to savor moments of mathematical beauty. We would find ways to play with the change 
of change and nudge conceptual movement in the direction of how the divergence of the gradient can tell 
a membrane where to get excited. It will be important to provide experiences that lead towards insight 
into the Bessel function, particularly given the role this function plays in the mathematics of circular 
membranes. Factorials and the gamma function would be a part of this journey. We look forward to 
meeting the challenges and opportunities of finding and/or creating aural/music experiences that help 
learners build foundational intuitions and that facilitate and stretch understanding. 

We realize that in this workshop, though we speak in terms of hearing (the size of) a drum based 
upon rhythm, in fact the activities lead towards using a single pulse to determine the fundamental 
frequency; this relatively simple relationship gives us all the information we need to answer the size 
question for a circular membrane. Investigating “real” drums can make the task of hearing the drum more 
real. Different drums – such as timpani, tabla, djembe, atsimevu, atumpan…- sound different, in large 
part, because of the manner in which they are constructed, which can alter what happens with the 
frequency relationships of the normal modes. For example, the manner in which the drum membrane is 
affected by the black patch affixed to the center causes the normal modes of the tabla to be in ratio 
relationships similar to those of a vibrating string [5]. Different drums lend themselves to different 
playing techniques, which heighten or dampen the contributions of the various modes to the sound that 
we hear. These variations lend themselves to investigations that would give more significance to using 
combinations of pulses in the appropriate ratio relationships to model what is going on. Included among 
the variety of “real” drums are rectangular shaped frame drums, such as the tamalin drum of the Ga 
people of Ghana, or box drums such as those used to play one of the forms of Rumba in Cuba. Using 
rhythm to model the spectral qualities of these different drums present further opportunities to connect 
sound and shape in novel ways and to perhaps provide more evidence to support the idea that it takes a 
drum to know a drum. 
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Many interesting inverse spectral problems, arising from “hearing the shape of a drum”, remain ripe 
for investigation. Fascinating questions exist about what information the spectrum contains about the 
dynamics of a system [6]. Questions remain about the size of the sets of isospectral objects. Many 
interesting implications emerge from using music intuitions and practices to inform the mathematics and 
vice versa. For example, a question such as, “Can one hear a family2 of drums?” is compelling3. 

A core motivation for our endeavor is an aim to get more young people, particularly those from 
underrepresented populations, securely on pathways to STEM professions. This entails figuring out more 
effective ways to engage learners around deep content, beyond attempts to simply make this content fun 
and friendly. More significantly, it is a matter of STEM practitioners and educators being more thoughtful, 
creative and resourceful in helping potential mathematicians and scientists of tomorrow find multiple 
entry points and pathways to excellence and high achievement. Hearing the beats of different drummers 
might help us walk and dance with the right moves. 
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