
 
An Indoor Alternative to Stereographic Spherical Panoramas 

 
Chamberlain Fong 

San Francisco, California USA 
chamberlain@alum.berkeley.edu 

 
 

Abstract 
 
The stereographic projection is a popular method for viewing spherical panoramas because of its ability to represent 
the scene as a “little planet” with a simulated overhead view.  However, the stereographic projection does not work 
well for indoor scenes.  In this paper, we present a method for producing a counterpart to the stereographic 
projection for indoor scenes. The main innovation of our method is the introduction of a novel azimuthal map 
projection that can smoothly blend between the stereographic projection and the Lambert azimuthal equal-area 
projection. Our projection has an adjustable parameter that allows one to control and compromise between 
distortions in shape and distortions in size within the projected panorama. This extra control parameter gives our 
projection the ability to produce superior results over the stereographic projection. 

 
1. Introduction 

 
Recent advancements in image stitching algorithms and fisheye lens optics have made capturing spherical 
panoramas easier than ever. Consequently, there are a growing number of photographers who work with 
such images. Spherical panoramas are the widest possible photographs that one can capture from a single 
viewpoint. They capture the entire sphere of light that shines over the photographer into a single image. 
However, spherical panoramas cannot be viewed easily unless projected to a planar image. 

Figure 1: Revolvable panoramas created using our method. 
 

The stereographic projection [8] is a popular method for artistic visualization of spherical 
panoramas. In fact, it is so popular on the Internet that there are thousands of stereographic panoramas 
posted in Flickr [1]. The stereographic projection is particularly good in producing a fake bird's eye view 
of an outdoor scene. This effect is commonly known as the "little planet" effect.  This moniker came from 
its ability to convert spherical panoramas into artistic photographs resembling planetoids in the middle of 
the sky. Moreover, these little planets have a remarkable property which we shall call revolvability. 
Revolvable images exhibit resilience to rotation. That is, if one rotates the image around its center by any 
angle, one can still get a reasonably intelligible image.  In fact, flipping the image upside-down keeps the 
image just as plausible as the original unrotated version 
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In this paper, we will present a spherical map projection derived from blending the stereographic 
projection with the Lambert azimuthal equal-area projection. This proposed projection can also be 
considered as a generalization of both projections. Like the stereographic projection, our projection can be 
used to convert a spherical panorama into a photograph with a simulated overhead view of the scene. In 
addition, the resulting image will also be revolvable. Unlike the stereographic projection, our projection is 
suitable for indoor scenes. Figure 1 shows some examples of our results.  

So, why is the stereographic projection suitable for outdoor scenes but not for indoor scenes? Usually, 
in outdoor scenes, the topmost region of the panorama is just the homogeneous blue sky. This region can 
be cropped out without adversely affecting the overall panorama. In contrast, for indoor scenes, cropping 
the ceiling out usually makes the panorama look incomplete. On the other hand, including too much of 
the ceiling causes significant size disproportions between the ceiling and the floor. See Figure 9 for a 
sneak peek of a picture showing the deficiencies of the stereographic projection for indoor panoramas. 
 

2. Algorithmic Overview 

An overview of the pipeline for our method is shown in Figure 2. The input to our algorithm is a spherical 
panorama. The output is an image with a simulated overhead view of the location. The projection consists 
of 2 steps. The first step is a projection of the sphere to a circular disc in the plane. We present a novel 
azimuthal map projection for this step.  The second step is to convert this circular disc into a square 
region. We denote this step as disc-to-square rectification.  

For efficiency reasons, the actual implementation of the projection on a computer works backwards 
by starting from the projected image and fetching pixels from the spherical panorama to fill in the 
projected image. An algorithmic pseudo-code implementation is shown next to Figure 2.  Each step in the 
pseudo-code corresponds to a box in the block diagram shown in Figure 2, but in reverse order. 
 

 
Figure 2: An overview of our projection from a 
spherical panorama to a revolvable image. 

 
 
 

   
3. Azimuthal Projections 

Azimuthal projections are map projections in which the sphere is projected onto a plane tangent to the 
sphere at a selected point [4]. This selected point, where the tangent plane intersects with the sphere, will 
be at the center of the projection. In azimuthal projections, the direction (also known as azimuth) from the 
center of the projection to every other point on the projection is shown correctly. Moreover, the shortest 
route from the center to any other point on the projection is a straight line. Thus, azimuthal projections 
place utmost importance to the center point of the projection. All azimuthal projections map the sphere to 
a circular disc on a plane, but this disc need not be finite. 

 Polar azimuthal projections are azimuthal projections that put the North or South Pole at the center of 
the projection. These projections have many desirable properties that make them useful in the creation of 
revolvable images. These properties include 

Rectified Azimuthal Projection algorithm 
       Input:    spherical panorama, 
                    blend parameter (for artistic control) 
     Output:   revolvable image 
 
For each pixel in the output image 

1) Convert the coordinates (x,y) on the square to 
corresponding disc coordinates (u,v). 
(See Section 5 for the equations) 

2) Convert the disc coordinates (u,v) to latitude φ 
and longitude λ on the sphere. This step 
involves using the equations in our proposed 
azimuthal map projection. 
(See Section 4 for the equations) 

3) Fetch the pixel color at the spherical 
coordinates (λ,φ) of the input panorama and 
use this as the color value of the current pixel  
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• There is radial symmetry of scale around the center, which produces naturally circular images; 
• Meridians of constant longitude are straight lines emanating radially from the center; 
• Parallels of constant latitude are concentric circles centered at the pole; 
• The meridians and the parallels intersect at 90o  . 

 When applied to spherical panoramas, polar azimuthal projections produce results that lead to the 
appeal of revolvable panoramas. Vertical features such as wall corners, posts, and tree trunks are 
meridians on the sphere. After projection, they remain as straight lines radiating outward from the center 
of the image. Horizontal features of constant latitude in the spherical panorama are projected to smooth 
circular arcs.  Moreover, these vertical and horizontal features still meet at 90 o after projection.   

The principal equations for polar azimuthal map projections are � = �����( 	
�	)			and 		 = �(�)	 where 
	� = √�� + �� . The variables λ and φ are longitude and latitude on the sphere, respectively. The range of 
values for these geodetic angles are: −� ≤ � ≤ �		and − �

� ≤ � ≤ �
�	. The variables u and v are coordinates on 

the plane after projection to a circular disc. As a convention in this paper, the disc is centered at the 
origin. The variable r is the distance of the projection point (u,v) to the center of the disc. 

All polar azimuthal projections share closely-related equations for mapping geodetic spherical 
coordinates (λ,φ) to projective plane coordinates (u,v). In fact, they all have the same expression for 
longitude λ as �����(� �⁄ )	. Also, the latitude of the projected point only depends on its planar radial 
distance � = √�� + �� to the center of the projection. The function f(r) can be specified arbitrarily. Each 
azimuthal projection is distinguished by a different function f  that expresses latitude in terms of r. 
 
Stereographic Projection. The stereographic projection is an important azimuthal map projection studied 
and described in Ptolemy's Planisphaerium dating back to 100 A.D. This projection maps the sphere to an 
infinite plane.  Figure 3 shows a stereographic image of the world and a panorama with the “little planet” 
effect. The equation for latitude in the south polar aspect of this projection [4] is  = 2	 tan��( �) − �

� . 	
 The stereographic projection is a conformal mapping. This means that angles between features are 
preserved locally after the projection. In other words, small scale shapes are not distorted within the 
projection. This property makes this projection useful for photographic applications. In particular, the 
stereographic projection works especially well in producing “little planets” of outdoor panoramas. It 
accentuates the shape of features in the upper hemisphere to give a pleasing cartoony effect. However, it 
deemphasizes the size of features in the lower hemisphere. This is often undesirable for indoor panoramas. 

Since the stereographic projection maps the sphere to an infinite plane, cropping is necessary in 
order to get a finite image of the spherical panorama.  It is possible to get 4� −   steradians of spherical 
coverage using the stereographic projection, where   is an arbitrarily small solid angle. However, this 
comes at the expense of extreme enlargement of features near the zenith. The smaller   gets, the larger the 
disproportion in size between the hemispheres will appear in the projected image.   

Figure 3: Stereographic projection (left) and an 
example of a panorama with the little planet 
effect (right). Both images are cropped. 

Figure 4: Lambert azimuthal equal-area 
projection in standard (left) and south polar 
aspect (right). 
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Lambert Azimuthal Equal Area Projection . Johann Heinrich Lambert developed an important 
azimuthal map projection in 1772. This projection maps the sphere to a finite circular disc. Figure 4 
shows a Lambert azimuthal mapping of the world in its standard form and in a polar aspect. 

In the canonical form of the Lambert azimuthal equal-area projection, the intersection point between 
the equator and prime meridian is located at the center of the disc. The point at the opposite side of the 
world is the intersection point between the equator and the international dateline. This antipodal point is 
projected to the whole perimeter of the disc.  

The Lambert Azimuthal projection has an important property that makes it useful in many geographic 
applications. This property is known as the "equal-area" property. In differential geometry parlance, the 
Lambert azimuthal projection is known as an equiareal projection [2]. Equiareal means that the projection 
preserves the relative size of all features after the mapping. In other words, the area of any feature on the 
sphere will be proportionally the same to its projected area on Lambert's circular disc. This property is 
important in keeping a proper balance of size between features in projected panoramas. 

Lambert designed his projection with several aspects in mind. The one with particular interest to us is 
when the South Pole is at the center of the projection. This is called the south polar aspect of the Lambert 
azimuthal equal-area projection [3]. The equation for latitude in this aspect of Lambert’s azimuthal 
projection is   = 2 	sin��(�) − �

�  . 

This equation holds when the sphere is mapped to an equiareal unit disc on the plane. The distance r 
from a projected point (u,v) to the center point of the disc is restricted to r ≤ 1.  The South Pole (nadir) lies 
at the center of the circular disc and the North Pole (zenith) is spread across the whole perimeter of the 
circular disc. 

Like the stereographic projection, the Lambert azimuthal projection has its shortcomings when used 
for projecting to indoor spherical panoramas. Indeed, the Lambert azimuthal projection balances the size 
of features within the indoor panorama, but this comes at the expense of features appearing unnaturally 
elongated and squished near the ceiling. This is because the Lambert azimuthal projection distorts angles. 
 

4. A Blended Azimuthal Projection 
 
The stereographic projection is a conformal mapping and the Lambert azimuthal projection is an equiareal 
mapping. The azimuthal nature of both map projections makes them suitable for creating revolvable 
panoramas. However, this azimuthal property is usually not enough to make aesthetically-pleasing 
panoramas. Being conformal or equiareal is also important. Conformal projections preserve angles within 
the mapping and avert shape distortions in the panorama. Equiareal projections preserve area within the 
mapping and avert size distortions in the panorama. 

Ideally, we want to have a mapping that is both conformal and equiareal. A theorem in differential 
geometry states that this is equivalent to being an isometry. An isometric mapping preserves distances 
across the entire projection; and in the process, does not distort shape or size. However, for our 
application of mapping the sphere to the plane, there is a well-known theorem by Euler (1775) that states 
that no such isometric mapping exists [4]. In other words, the best that we can do is look for a 
compromise [9] between being conformal and being equiareal in our projections. It is impossible to have 
both properties.  

 
A Blended Compromise. As a compromise, we present an azimuthal projection that essentially blends 
the stereographic projection with the Lambert azimuthal equal-area projection. We introduce the variable 
β which acts as blending parameter between the two projections.  When β is set to 0, the resulting 
projection is the stereographic projection. When β is set to 1, the resulting projection is the Lambert 
azimuthal projection. In between, the projection is a hybrid of the two azimuthal projections. The 
equation for latitude in this blended azimuthal projection is    = 2	tan��(		 #

$��%&#&) −
�
�   . 

It is easy to check by substitution and some algebra that the latitude equation for this blended 
azimuthal projection matches the stereographic equation when β=0.  Likewise, it is easy to check that the 
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latitude equation for this blended azimuthal projection matches the Lambert azimuthal equation when β=1 
by using the trigonometric identity 	sin��( �) = 	 tan��(� √1 − ��⁄ )  . 
 
Normalized Form. The stereographic projection maps the sphere onto an infinite plane. In contrast, the 
Lambert azimuthal projection maps the sphere onto a finite circular disc. Needless to say, there is a wide 
disparity between the span of both projections. In order to have an effective blend of the two projections, 
we need a projection with a span that can grow from a finite disc to the infinite plane as β goes from 1 to 
0. This is exactly what the blended azimuthal projection does - it grows infinitely in size as β approaches 
0. In fact, the blended azimuthal projection maps the sphere to a disc with radius  1 β)   . 

The vast difference in the spanning range between the stereographic and the Lambert azimuthal 
projection adds difficulty in creating photographs from blending the two projections. We, therefore, 
propose a normalized form of the blended azimuthal projection. This normalization can be derived from 
its unnormalized latitude equation by writing r in terms of a normalized dummy variable defined as 
*+
,,- = �	., then renaming the dummy variable out of the equation. After this, the equation for latitude 
becomes    = 2	tan��(	 #

%$��#&	) −
�
�	 . 

This normalized form of the blended azimuthal projection effectively maps the sphere to a unit disc 
for all values of . ∈ (0,12. The only complication with this normalized form is that we are strictly 
restricted to have β > 0. That is, this projection cannot be set to 100% stereographic.  This limitation 
stems from the difficulty of scaling down an infinite plane to a unit disc. Nevertheless, β can be set to an 
arbitrarily small number ε > 0 that can make the projection as close to stereographic as one wishes 
without actually setting β to zero. This helps us prevent division by zero and other undesirable infinities in 
the equations. Figure 6 shows the normalized blended azimuthal projection at different values of β from 
0.1 to 1. In essence, this is like a sequence of frames of morphing from the nearly stereographic projection 
to the Lambert azimuthal equal-area projection. 

In summary, we have presented a blended azimuthal projection that is a hybrid between the 
stereographic projection and the Lambert azimuthal equal-area projection. Furthermore, we introduced a 
normalized form that always maps the sphere to a unit disc. A table summarizing the key properties of the 
4 polar azimuthal projections of interest is provided below. 

 

 
Figure 5: Table summarizing the different map projections used in this paper. 

 The 2nd and 3rd columns of the table are forward and inverse equations relating latitude φ on the sphere 
with radial distance r on the circular disc after projection. 

 

 
Azimuthal 
projection 

(south polar aspect) 

 
																			 = �(�) 

3ℎ5�5							� = $�� + �� 

 
																														� = ���() 

  where 		� = �	 cos � 						� = �	 sin� 
 

 
key  

property 

 
mapping 

span 

 
blend 

value 

 
stereographic 

 
  = 2	 tan−1(�) − �

2 
� = 	 tan(2 + �

4) 
 

conformal 
 

0 ≤ � < ∞ 
 
0 
 

 
Lambert 

azimuthal 

 
  = 2	 sin−1(�) − �

2	 � = 	 sin(2 + �
4) 

 
equiareal 

 
0 ≤ � ≤ 1 

 
1 

 
 

blended 

 

 = 2	tan��( �
$1 − β���	) −

�
2 

 

� = 	 sin(2 + �4)
:cos�(2 + �4) + .� sin�(2 + �4)

 
 

adjustable 
 

0 ≤ � ≤ 1
β 

 
β 
 

 
normalized 

blend 

 

 = 2	tan��( �
β√1 − ��) −

�
2 

 

� = 	 . sin(2 + �4)
:cos�(2 + �4) + .� sin�(2 + �4)

 
 

adjustable 
 

0 ≤ � ≤ 1 
 
β 
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Figure 6: The normalized blended azimuthal projection (south polar aspect) at varying values of β . 
 

5. Disc-to-Square Rectification 
 
Most of the world's photographs are rectangular. People are so accustomed to seeing rectangular 
photographs that there is a slight psychological aversion to photographs that are not. Besides, rectangles 
are easily tiled for display in albums, and make much more efficient use of display space than circles. 
This is the main motivation for this extra step. In this section, we shall introduce a simple algorithm for 
mapping a circular image to a square. We designed this algorithm to work well with circular azimuthal 
images as input.  

Our problem of mapping a circular disc to a square is similar but not equivalent to the classic 
mathematical problem of "squaring the circle". For one thing, in the classic mathematical problem, one is 
restricted to only using a straightedge and a compass. Our problem concerns finding an algorithm that a 
computer can perform and calculate. So this is a significantly reformulated problem with a specific 
application of converting circular photographs into square photographs. 

The canonical space for our mapping is the unit disc centered at the origin inscribed inside a square. 
This unit disc is defined as ; = <(=, >)|	=� + >� ≤ 1}.  Its circumscribing square is defined as the region 
A = B−1,12�. This square has a side of length 2. 

In this paper, we shall denote (u,v) as a point in the interior of the unit disc and (x,y) as the 
corresponding point in the interior of the square after the mapping. Our goal is to derive an equation that 
relates (u,v) to (x,y). This equation will ultimately define how the mapping converts a circular disc to a 
square region. Figure 7 shows a diagram of the unit disc and the square used for the mapping. 
 
Radial Constraint. As a design constraint, we impose that the angle that the point (u,v) makes with the x-
axis be the same angle as that of point (x,y). We denote this constraint as the radial constraint for the 
mapping.  This effectively forces points to only move radially from the center of the circle during the 
mapping process. Mathematically, if  θ is the angle between the point (u,v) and the x-axis, these equations 
must hold:  cos C = 


$
&D�& = E
$E&D-&			and 		sin C = �

$
&D�& = -
$E&D-&  . 

Meanwhile, each point (u,v) in the interior the circular disc can be parameterized with its polar 
coordinates as � = �	 cos C = �	 E

$E&D-&	 and 		� = �	 sin C = �	 -
$E&D-& , where 0 ≤ t ≤ 1 is the point's distance to 

the origin, and θ is the point's radial angle with the x-axis. The next step is to find a suitable expression 
for t in terms of x and y, so that we have a mapping equation that relates (u,v) to (x,y). 

Figure 7: Diagram for the disc-to-square 
rectification process. 

 

 
Figure 8: FG-squircle   =� + >� − F&

G& 	=�>� = H�     
at varying s parameter values. 
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Fernandez-Guasti’s Squircle.  In 1992, Manuel Fernandez-Guasti [5] introduced an algebraic equation 
for representing an intermediate shape between the circle and the square.  His equation included a 
parameter s that can be used to morph from a circle to a square smoothly. Figure 8 illustrates the shape at 
varying values of s. This shape has the equation  =� + >� − F&

G& 	=�>� = H�	. 
The parameter s can have any value between 0 and 1. When s = 0, the equation produces a circle 

with radius k. When s = 1, the equation produces a square with a side length of 2k.  In between, the 
equation produces a smooth curve that resembles both shapes. Using the squircle, we can design a way to 
map a circular photograph smoothly to a square photograph. The main idea is to map each circular 
contour in the interior of the disc to a squircle in the interior of the square.  

In order to get a continuum of growing concentric squircles in the interior of the square, we impose a 
simple rule s = k in Fernandez-Guasti's squircle equation. This effectively reduces this squircle equation 
to =� + >� − =�>� = I� .  Furthermore, by varying s from 0 to 1, we get contour curves that fill the interior 
of a square with concentric squircles growing in size. We then correspond each squircle contour of 
parameter s inside the square to a circular contour of parameter t inside the circular disc. This can be done 
by setting  I = � = 	$=� + >� − =�>�. Substituting back, we get simple equations relating the point (u,v) on 
the disc to the point (x,y) on the square. These equations are 

� = 	=$=� + >� − =�>�

$=� + >�	 																	� = 	 >$=� + >� − =�>�

$=� + >�  

6. Results and Possible Enhancements 

We show images produced by our method applied to several spherical panoramas in Figure 9. We also 
show the effects of varying the blend parameter β on the panorama. β can be considered as a parameter 
for artistic control of the compromise between being conformal and being equiareal. We call our method 
as the rectified azimuthal projection. 

Although we emphasized the use of our projection for indoor scenes in this paper, we would like to 
mention that our method also works with outdoor scenes.  Figure 9 shows a progression of our projection 
for an outdoor scene with β varying from 0 to 1. The cropped stereographic little planet (leftmost image) 
highlights one of the inherent problems with the stereographic projection. Whenever there are very tall 
features in the outdoor panorama, such as the monolithic columns in our example, there is excessive 
enlargement of features near the zenith of the panorama. Moreover, this enlargement comes at the 
expense of the other features within the panorama, specifically those near the nadir which get reduced in 
size. In our example, the nadir region is shrunk to the point of being barely perceptible. In contrast, the 
Lambert azimuthal equal-area panorama at the right tends to squish features near the zenith, which 
effectively makes shapes difficult to discern. The two middle images offer a compromise between the 
stereographic and the Lambert azimuthal projections, and give results that balance distortions in size and 
shape. Also, although we did not examine the distortion effects of our disc-to-square mapping to the 
overall projection, we would like to mention that the artistic control parameter β can be used to mitigate 
much of the size and shape distortions introduced by this extra step in the projection. 

There are several enhancements to our method that are not discussed in this paper. We refer the 
interested reader to our expanded preprint [6] for details. First, our images are confined to a square. We 
have investigated ways to extend our method to produce rectangular images. Also, in this paper, we 
restricted our discussion to the case where the South Pole is at the center of projection. It is certainly 
useful to be able to use any location on a tilted sphere as the center of the projection. Likewise, in this 
paper, we relegated the determination of the blend parameter β to manual tweaking as an artistic control 
parameter. Ideally, we want to explore automated ways of figuring out the most aesthetically-pleasing β. 
There are several avenues for future work on this area. For one thing, the disc-to-square mapping that we 
presented here is pretty simple. It is neither conformal nor equiareal. Such mappings have been studied 
and discussed in the computer graphics literature [7]. It would also be interesting to apply our mapping to 
discs other than azimuthal projections of spheres. For example, it would be interesting to see Escher’s 
circle limit drawings stretched to a square. 
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Figure 9: Adjusting the blend parameter of the rectified azimuthal projection. 
* Note: Being fully equiareal requires using a different disc-to-square mapping than the one mentioned in this paper. 

 
7. Summary and Conclusion 

 
We presented the use of a rectified azimuthal projection for creating revolvable panoramas with a 
simulated overhead view of indoor scenes. The main innovation of our technique is the use of a blended 
azimuthal projection in conjunction with a novel disc-to-square mapping algorithm. Finally, the main 
message of this paper is to convey the importance of the compromise between being equiareal and being 
conformal in spherical panorama projections. Conformality is simply not good enough for indoor scenes! 
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