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Abstract

A musical canon contains two or more lines of music, each playing the same basic melody, but with their starting

points shifted. Surprisingly, exactly this same structure emerges among an interesting set of differential equations

(including some that are important for physics) that exhibit the property known as shape invariance. In this paper, I

demonstrate the parallelism of these structures.

Introduction

Imagine listening to a melody. Perhaps it is appealing, perhaps not. But now, for some reason, you listen

to two people playing the same melody, except one has started a measure after the first person. For most

melodies, the result would be unremarkable at best, and more likely somewhat cacophonous. But for certain

melodies, something surprising emerges: a euphonious piece of music, the two lines harmonizing effectively

with each other. Not only does the second measure suitably follow the first measure melodically, but also, at

the same time, the second measure meshes harmonically with the first measure. Until you played the melody

in this dual way, this structure was hidden, but it was clearly essential to how the piece was composed.

Of course, the structure could be more elaborate. Three or four people could play the melody, each

entering a fixed interval after the previous voice, and they might still fit together. Or perhaps the second

line is shifted in time and in pitch, say up a fifth, and, if there are additional voices, these might each come

in a fifth above the previous voice. And while most melodies would yield something akin to noise when

played this way, there are a select few melodies that yield something harmonious and appealing. The pieces

produced by such self-harmonizing melodies are called canons.1

Discovering that a melody is self-harmonizing reveals a structure underlying the melody that is not

apparent unless the melody is paired with itself in the appropriate way. Surprisingly, a very similar structure

emerges among a class of differential equations, including some that are important for physics.

In particular, we will look at differential equations which we treat as eigenvalue problems. As a toy

model, we might ask, “For what functions f is − d
dx

f (x) = E f (x), where E is a constant?” To make this

better defined, we might require that the functions be defined on the positive real axis, and go to zero as

x → ∞. The functions that satisfy this condition are fa(x) = Ne−ax where a is a positive real number, and

E = a. Thus, the possible values of E are the positive real numbers; this is called the spectrum of − d
dx

.

The functions fa(x) are the eigenfunctions of − d
dx

, and we can choose some convention (e.g., f (0) = 1) to

determine a unique eigenfunction for each value in the spectrum.

We can generalize this problem to any differential operator, that is, an expression like − d2

dx2 + γx4 or

− d4

dx4 + 3x d3

dx3 + cosh(x). When we do so, we can typically show that there is some spectrum and set of

1One should be aware that in most actual canons, composers include slight modifications between the voices, although this is

not the case in a perfect round, for example.
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eigenfunctions, but without a way to determine these; even knowing part of the spectrum or some of the

eigenfunctions does not tell you what the rest of the spectrum and eigenfunctions are.

However, there are specific differential operators—appearing in Sturm-Liouville problems and quantum

physics—for which the exact spectrum and eigenfunctions can be found, using methods from analysis. Why

these operators were special was not clear. But in work over the past half century [8] [5] [2] [4] [11],

it has emerged that the spectrum and eigenfunctions of any one of these special differential operators is

not properly understood alone. Rather, each of these exactly solvable differential operators has a partner

differential operator (obtained via supersymmetry) such that, for example, the second eigenfunction of one

differential operator must relate, in a specific way, to the first eigenfunction of its partner differential operator.

The partner differential operator can be obtained in two distinct ways from the original differential operator,

and the reason that these differential operators have spectra and eigenfunctions that can be solved exactly is

because of the two simultaneous ways they must pair with their shifted partners. Just as, in a canon, the need

to harmonize effectively with the first measure determines the form of the second measure, the need to be a

supersymmetry transform of the first eigenfunction determines the form of the second eigenfunction.

In short, discovering the algebraic reason these particular problems are analytically exactly solvable is

like discovering that a melody you had known all your life was actually designed to be part of a canon.

In writing for an audience with mixed expertise, it is a challenge to choose between the general formu-

lation and specific examples. The simplest specific example does exhibit the necessary features, but at the

same time, does not exhibit the full possible structure. But the general formulation requires more background

than it is feasible to develop in this paper. Thus, I will focus primarily on a simple example, but then also

discuss what can be generalized.

This paper was inspired by Noam Elkies’ public lecture at Bridges 2014, and the recognition that the

musical structures he was describing had the same form as the mathematical structures I was familiar with

from the study of shape invariant differential equations in quantum mechanics

Canons in Music

In music, a canon is a piece in which there are several lines, each of which plays the same melody, but starting

at different times [9]. In the simplest case, one has two voices, each playing the exact same melody, but with

the two voices shifted in time, the second voice starting after the first voice has already played several notes.

Even within the canon form, there is a richness of possibilities. One might have two, three, four, or

more voices. There are canons in which each later entering voice is transposed relative to the previous voice;

canons in which voices may appear reflected in pitch (e.g., the second voice plays the melody of the first

voice in contrary motion, one melody going up in pitch where the other goes down); and canons in which

the duration of notes in the voices might be subject to an overall scale factor (e.g., the second voice plays the

same melody as the first voice, but each note lasts twice as long as its counterpart in the first voice).

For our purposes, we can focus primarily on the so-called simple canon, in which each voice plays

exactly the same melody as the first voice, at the same pitches, in the same tempo, and furthermore, with

each voice entering by the same time delay from the previous voice. For the most part, it will suffice to look

at a two voice simple canon, discussing generalizations as appropriate. We will denote the Nth measure of

the overall piece as measure N, and the Nth measure of the basic melody as segment N.

For convenience, we make the further restrictions that the measures of the piece are rhythmically regular

(i.e., each measure has the same number of beats) and that each voice comes in one measure after the previous

voice. Thus, the second voice enters when the first voice begins its second measure; if there were are voices,

then in the ninth measure of the piece, the first voice plays the ninth segment of the melody at the same time
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that the second voice plays the eighth segment, the third voice plays the seventh segment, and the fourth

voice plays the sixth segment. Letting the time delay between voices be one measure gives us an easy way

to speak of the time shift between different lines.

How might one write a two-part simple canon? One determines segment #1 of the melody and places

this in measure #1 of the first voice. Measure #1 of the second voice is left empty, but then measure #2 of

the second voice is filled with segment #1 of the melody. Using the rules of counterpoint, we now determine

segment #2 of the melody to place in measure #2 of the first voice, so that it fits appropriately with what else

is being played at that time (namely, segment #1 in voice two). Now segment #2 is placed in measure #3

of the second voice; the rules of counterpoint let us determine a segment #3 of the melody, which goes in

measure #3 of the first voice, as well as in measure #4 of the second voice. One continues in this way, with

the rules of counterpoint allowing us to pair what goes on in measures played simultaneously, and the time

shift of the canon letting us move forward from measure N in voice one to measure N +1 in voice two.

Canons in Differential Equations

Sometimes one studies a differential equation with a particular set of initial conditions so that there is a

unique solution. However, there are also situations that arise—this is, for example, often the case in physics

or when solving a partial differential equation by means of separation of variables—in which one has an

ordinary differential equation of a form such as

−1

2

d2

dx2
φ(x)+U(x)φ(x) = Eφ(x) (1)

where U(x) is specified, but we are looking for functions φ(x) and constants E that together provide a

solution to the equation. We can organize the solutions as {E1,φ1(x)}, {E2,φ2(x)}, {E3,φ3(x)}, . . ., where

we have E1 < E2 < E3 < · · · . We will refer to the Ek as energies, since that is the role they play in quantum

mechanics, but this identification is not essential; here it is just a convenient way to refer to these constants.

Most such systems cannot be solved exactly, but there are select examples whose full spectrum can

be determined exactly by power series or other methods of analysis. The reason such solutions exist is not

apparent; it just seems like a mathematical coincidence.

But in [8] [5] [2] [4] [11], the underlying reason these particular systems can be solved exactly has been

identified. One finds that in those situations, system (1) has a partner equation, to be described below. The

partner equation has its own solutions {Ẽ1, φ̃1(x)}, {Ẽ2, φ̃2(x)}, {Ẽ3, φ̃3(x)}, . . .. However, in the exactly

solvable cases, the solutions of the partner equation are related to those of the original equation by Ẽk = Ek+1

and φ̃k(x) = φk(x). This relationship is shown in Figure 1.

Once we establish this structure, the differential equation almost solves itself, in a way analogous to

what happens in a musical canon. The idea is that the original equation has a solution with energy E1 with

function φ1(x). The partner equation has no solution with energy E1. However, the function φ1(x) is a

solution of the partner equation with energy E2, while the original equation has a different function φ2(x)
that has energy E2. This function φ2(x) appears as the function with energy E3 in the solution to the partner

equation, but then one finds a separate function φ3(x) that solves the original equation with energy E3.

The parallel to the musical canon should be clear. For a given energy value Ek, the original equation

has a solution φk(x) while the partner equation has a solution φk−1(x). This is what happens in a two-part

simple canon, where at the kth measure of the piece, the first voice plays segment k of the melody while

the second voice plays segment k−1. Thus, the first line of the canon is like the original equation, and the

second line of the canon is like the partner equation. Each new energy corresponds to a new measure. In
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Differential Equations: Spectrum Pairing

Let us suppose that we are trying to solve Hφ(x) = Eφ(x), but we find that there is a way to factorize H and

write H = AB. For right now, we will just examine this problem formally, but in the next section, we will see

a particular example of this structure. (Although the order of A and B matters, the order of A or B and any

real number like E can be interchanged at will.)

So if we have A and B such that H = AB, what happens if we consider H̃ = BA? What is the connection

between H and H̃? The answer is that whenever H has a solution with energy E, so does H̃, and vice versa.

The functions need not be the same, but the values of E are.

To see this, let us imagine we have a solution to Hφ = Eφ , or, in other words (AB)φ = Eφ . Then

EBφ = B(Eφ) = BHφ = B(AB)φ = (BA)Bφ = H̃(Bφ) (5)

If we look at this chain of equality, we see, then, that if φ satisfies Hφ = Eφ , then Bφ satisfies H̃(Bφ) =
E(Bφ). A similar argument shows that if H̃ψ = Eψ , then H(Aψ) = E(Aψ).

In other words, energies E that we obtain for H = AB are the same as the ones we obtain for H̃ = BA.

Associated with this is also a pairing of the functions that give a common E, by acting on that function with

either A or B, depending on which direction we are going. (The origin of this pairing is supersymmetry [2]).

Note that there is one caveat in the above. If there is a function Bφ0 = 0, it does satisfy Hφ = Eφ

with energy E = 0, but there is no corresponding function Bφ to be a solution to the H̃ equation. (A similar

statement holds if Aψ0 = 0.) Thus we need to modify our statement: the pairing of solutions for the H and

H̃ equations holds for the non-zero energies only. This actually will be beneficial to us!

This pairing has gotten us halfway to our goal, associating solutions to the H differential equation and

to the H̃ differential equation by pairing solutions with the same E value, much as we can associate, in a

canon, any two measures played at the same time. But this is just the first step. It is not until we get to the

next property that the canon structure becomes both apparent and natural.

The Quantum Harmonic Oscillator

We now turn to a particular example, namely the equation

−1

2

d2

dx2
φ(x)+

1

2
(x2 −1)φ(x) = Eφ(x) (6)

This simple equation is not only intimately associated with the Hermite polynomials [1], but it is also of

fundamental importance in quantum physics. It is the equation for the quantum harmonic oscillator, appears

in the mathematical derivation that shows that electromagnetic and other fields can be described in terms of

particles, is used to describe vibrations of molecules, and plays a key role in spectroscopy.

We can write equation (6) as Hφ(x) = Eφ(x), where

H =−1

2

d2

dx2
+

1

2
(x2 −1) . (7)

We will define

A =
1√
2

(
− d

dx
+ x

)
B =

1√
2

( d

dx
+ x

)
(8)
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Then, it is a simple calculation to see that for any function f (x),

A(B( f (x))) = A(B f (x)) =
1

2

(
− d

dx
+ x

)(d f (x)

dx
+ x f (x)

)
=−1

2

d2

dx2
f (x)+

1

2
(x2 −1) f (x) = H f (x) (9)

and so H = AB. Using the results of this previous section, this means that energies E for which H has

solutions are also the energies E for which H̃ has solutions. What is H̃? Calculating, we see

H̃ f (x) = B(A f (x)) =−1

2

d2

dx2
f (x)+

1

2
(x2 +1) f (x) , (10)

and so H̃ =− 1
2

d2

dx2 +
1
2
(x2 +1).

What is striking about this is that H̃ = H +1. In other words, other than a shift by an overall constant,

H̃ and H are the same. This allows us to find solutions to the differential equation.

Canons and the Solution to the Harmonic Oscillator

We are now in a position to find the solutions (energies and eigenfunctions) to Hφ(x) = Eφ(x). What do we

know so far? In addition to the general properties connecting H and H̃, we now have the additional result

that H̃ = H +1. Thus, if Hφ = Eφ , H̃ = (E +1)φ . This means that the solutions to the H and H̃ equations

are paired in an even tighter structure than the simple AB vs. BA relationships would imply.

Recall that from the general pairing of H̃, we know that if Hφk = Ekφk, then H̃φk = Ek+1φk. From the

particular result H̃ = H +1, we can go further: H̃φk = (H +1)φk = (Ek +1)φk. Put all together, this yields

Ek+1 = Ek +1 (11)

So now how do we solve the original equation? To get started, we need one technical point. As is shown

in the appendix, the energies for Hφ = Eφ for (6) have to be non-negative. Thus, if we can find a solution to

Hφ = 0, this has to correspond to E1, the lowest energy in the spectrum. Furthermore, since H̃ = H +1, this

means the lowest possible energy for the H̃ equation is 1.

Finding a solution to Hφ1 = 0 is easy, as we need simply solve Bφ1(x) = 0. The solution is obtained via

0 = Bφ(x) =
1√
2

( d

dx
+ x

)
φ(x) =⇒ dφ1(x)

dx
=−xφ1(x) (12)

from which it follows quite straightforwardly that φ1(x) = e−x2/2. (Since we are thinking of these solutions as

eigenfunctions or as basis functions like the sines and cosines of Fourier theory, multiplying this solution by

an overall constant still produces a solution, but does not change the meaning or significance of the solution.)

With φ1(x) in place, we now work our way up the paired equations, in what looks just like a two-part

simple canon. We proceed as follows:

• With energy E = 0, H has a solution φ1(x) = e−x2/2.

• There is no H̃ solution with energy 0.

• With energy E = 1, H̃ has a solution φ1(x), while H has a solution φ2(x) = Aφ1(x).

• With energy E = 2, H̃ has a solution φ2(x), while H has a solution φ3(x) = Aφ2(x).

• The solution for H at energy N (where N is a natural number) shows up at energy N +1 for H̃.
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spaced energies. Instead of a relationship as simple as H̃ = H + 1, the relationship can be slightly more

complicated. Let H depend on some real number g (a parameter in the differential equation). Then the

pairing of AB and BA still works as described above, and we still say the system is shape invariant when

H̃ and H have the same mathematical form. However, the parameter g allows some extra flexibility. For

example, in some cases we will find that H̃(g) = H(g+ 1) + c(g), where c(g) is a real number constant

that depends on g. (Note that H(g+ 1) is just one example; other functions of g could appear, depending

on the system at hand.) The c(g) plays the role here that shifting the energy by 1 unit did in the harmonic

oscillator. The appearance of H(g+ 1) indicates that the partner equation has the same form as H(g), but

its eigenfunctions that appear in the solutions are rescaled in some way. Thus, we are still encountering the

structure of a musical canon, but the kind in which each new voice is a transformed form of the preceding

voice.

Appendix

To see that the energies in (6) are non-negative, recall that H = 1√
2

(
− d

dx
+x

)
1√
2

(
d
dx
+x

)
, and use integration

by parts to get ∫
∞

−∞

φ(x)Hφ(x)dx =
1

2

∫
∞

−∞

(dφ(x)

dx
+ xφ(x)

)(dφ(x)

dx
+ xφ(x)

)
dx (13)

Since φ(x) must be square integrable, it vanishes at x =±∞. The expression on the right is the integral of a

function squared, and so must be non-negative. Thus, if Hφ(x) = Eφ(x), we have

E

∫
∞

−∞

(
φ(x)

)2

dx =
∫

∞

−∞

φ(x)Hφ(x)dx =
1

2

∫
∞

−∞

(
−dφ(x)

dx
+ xφ(x)

)2

dx ≥ 0 (14)

Since the integral of φ 2(x) over all space must also be non-negative, this implies that E ≥ 0.
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