
A Taxonomy of Generative Poetry Techniques

Carolyn Lamb, Daniel G. Brown, Charles L.A. Clarke
Cheriton School of Computer Science, University of Waterloo

Abstract
We describe computer-generated poetry techniques in the categories of mere generation, human enhancement, and
computer enhancement, and argue that the artificial intelligence techniques used by computer scientists are artistically
relevant. We also generalize this taxonomy to computer-generated music.

Introduction

Many people generate poetry using computers, from artists exploring the effects of algorithms on language,
to Internet hobbyists, to computer scientists interested in making artificial intelligence creative. Despite
these varied authors, and lack of communication between communities, the techniques used to generate such
poetry can be boiled down into a few simple categories with well-defined relationships.

We define these categories as follows. In mere generation, a computer produces text based on a random
or deterministic algorithm. All generative poetry systems we have come across use some form of mere
generation. In the remaining two categories, the results of mere generation are modified and enhanced. This
occurs either through interaction with a human (Human Enhancement), or through the use of optimization
techniques and/or knowledge bases (Computer Enhancement). The results of mere generation can appear
nonsensical, though this is not always a bad thing from an artistic perspective. By bringing in knowledge
about words and the world, and by setting artistic goals, both human and computer enhancement drive
generative poetry towards coherence and artistic style.

Digital poetics encompasses a wider range of techniques than those described here. They include hy-
pertext poetry, kinetic poetry, chatbots as art, interactive fiction [6], multimedia poetry, and even poetry that
presents itself as a game [8]. However, for the purposes of this paper, we are interested only in English
poems represented as ASCII text, in which the computer has a meaningful role in determining what the text
will be. This is our working definition of “generative poetry”.

We are not the first to attempt a taxonomy of generative poetry. Roque [28] classifies poems according
to the goals of their creators, while Funkhouser [9] uses the categories of permutational, combinatorial, and
template-based generation. Gervas [11] classified four types of artificial intelligence techniques used for
poetry. These taxonomies are useful. However, our taxonomy serves needs that others do not. It includes
generative poetry from a variety of sources, whether scientific, hobbyist, or artistic, and focuses not on
technical processes but on the purposes for which these processes are used. Further, our taxonomy illustrates
how generative poetry can move forward both computationally and artistically.

In the rest of this paper, we illustrate the techniques used in our three categories. We explain why
scholars have moved away from mere generation, and argue that Computer Enhancement, while pursued
primarily by scientists, has the potential to solve artistic dilemmas in generative poetry. We then bring up
the related field of generative music, to show that our taxonomy can be generalized to other creative tasks.

Methods of Mere Generation

Templates. Template generation, also called slot-filling, has been common since the first generative poetry
program, Theo Lutz’s “Stochastic Texts”. Template generation is one of the simplest means of constructing

Bridges Finland Conference Proceedings

195



a poem. The basic steps are as follows:

1. Create lists of words or phrases in different categories, e.g. nouns or verbs.

2. Create one or more line templates with slots into which a word from a given list can be inserted.

3. Randomly select a word from the appropriate list to fill each slot.

“Stochastic Texts” uses templates and word lists based on lines from Kafka’s “The Castle”. Template
poetry can draw its word lists from existing art, or from dictionaries representing the whole of the language,
or the lists can be handcrafted by the programmer.

An issue in template poetry is repeatability. Often, running a template program several times will
produce a repetitive effect in which the template’s structure becomes obvious, as in this example [16]:

A HOUSE OF STEEL
IN A COLD, WINDY CLIMATE

USING ELECTRICITY
INHABITED BY NEGROES WEARING ALL COLORS

A HOUSE OF SAND
IN SOUTHERN FRANCE

USING ELECTRICITY
INHABITED BY VEGETARIANS

Such repetitiveness may, as in the given example, be intentional. However, most poets want output that looks
fresh each time the program is run. One way of achieving this is with templates that change over time. John
Morris, for example, uses shifting templates to create haiku [23]:

Frogling, listen, waters
Insatiable, listen,
The still, scarecrow dusk.

Listen: I dreamed, was slain.
Up, battles! Echo these dusk
Battles! Glittering...

Markov chaining. A Markov chain is a statistical model applied to data in a series. Based on the last N
entries, an N-order Markov chain calculates the probability distribution for the next entry. The N entries used
to make the prediction are referred to as an n-gram; no entries before the n-gram need to be considered. For
poetry generation, the entries in the n-gram can be characters or words. A probability model is generated
either from a broad corpus or a specific work, and the system repeatedly samples from the model to create
the next entry. Using words as entries ensures that no novel words appear in the output. Using characters
results in many non-words and neologisms, which can be an intended effect [28]:

book her sist be chin up seen a good deal uneasilent for coursation
dropped, and the
litter on,

The Queen was
siliarly with them, the Footmance.

Markov chain poetry is related to Dadaist “cut-ups”, in which a text is cut into N-character blocks and
rearranged [9]. While Markov chains preserve many features of the input text, they fail to replicate grammar.
Context-free grammars. A context-free grammar constructs sentences by recursively applying generation
rules. It is a more flexible generalization of a slot-filling template. For example, a [NOUN PHRASE]
slot could be filled with a noun, but also with “the [ADJECTIVE NOUN]”, “the [NOUN] that [VERB
PHRASE]”, or a variety of other grammatical forms, which can continue to recurse and produce more sub-
phrases.

Lamb, Brown and Clarke

196



By adding Markov chain-like probabilistic reasoning to a context-free grammar, one can construct a
stochastic context-free grammar which constructs the most likely sentences based on some input corpus
while remaining grammatical. Jim Carpenter’s Electronic Text Composition uses probabilistic grammar,
resulting in language which is semantically odd, yet more coherent than the output of a Markov chain [3]:

The important statement, like one advance act.
A spit goes eastern, showering.
it perches on the branching foam

The statement.

Found poetry. Another method is to skip the generation process and, instead, use a computer to harvest text
written by humans. While most generation techniques use existing human language—as a corpus for calcu-
lation of N-gram frequencies, for example—found poetry preserves entire human-written sentences without
significant modification. The computer’s role is to select text which meets some constraint and present it out-
side of its original context. Examples include Ranjit Bhatnagar’s “Pentametron”, which constructs sonnets
by assembling pairs of rhyming, 10-syllable posts on Twitter [1], and the New York Times Haiku project,
which mines phrases with a 5-7-5 syllabic structure from that newspaper [13]:

Surely that shower
couldn’t have been going since
yesterday morning.

Miscellaneous methods. Some poetry is generated using other methods: for example, permuting the words
in a short phrase [9]. We will not explore these methods in detail.

The Problem With Mere Generation

While the methods described above may seem endlessly flexible, there is a limit to their usefulness. The
frequency of words and the rules of grammar can be modeled, but semantic coherence is more difficult. This
has caused some pioneers of generative poetry to grow discouraged with the form. Charles Hartman, for
example, concluded that even the most syntactically correct programs “did only a little to drive the random
words toward sense [9].” Chris Funkhouser, studying poetry generators, says that “even the best of them
fatigue the reader with blatant slotted structures and repetition.”

Lack of coherence is not necessarily a problem. Dadaist poets are interested precisely in the human
response to nonsense [9]. Similarly, Oulipans [9] are interested in inventing poetry techniques, not in the
quality of the poetry itself. However, other poets may be discouraged by the limitations of current generation
techniques. We will now turn our attention to the two major methods for improving on these techniques.

Human Enhancement

The most obvious way for a human to enhance computer-generated poetry is to edit the poetry generator’s
output. While this arguably invalidates the generator’s usefulness [4], it is an established practice. John Cage,
for instance, removed unwanted words from the output of his algorithms [9]. Computational text generation
is seen by many as a “jumping-off point” [4] from which they acquire raw material.

One group particularly keen on this is the Flarf movement, which revolves around intentionally lowbrow
language from the Internet. One Flarf technique, “Google sculpting”, consists of searching the Internet for
particular terms, taking phrases from the results (a form of Found Poetry)—and then recombining these
phrases however the poet sees fit. The result is a distinctive, over-the-top poetics [12]:

A Taxonomy of Generative Poetry Techniques

197



Oddly enough, there is a
“Unicorn Pleasure Ring” in existence.
Research reveals that Hitler lifted
the infamous swastika from a unicorn
emerging from a colorful rainbow.

Even more interesting is Gnoetry, an application for interactive text generation which allows decisions
to cycle between the computer and a human user. The computer generates poetry based on n-grams from
a user-provided corpus. The user can click on individual words, deciding which words and phrases are
worth keeping and which should be generated again. The computer then generates new phrases to replace
those the user did not find satisfactory. This repeats as many times as the user would like. Gnoetry turns
the generation process into a dialogue between the human and computer. An online community, blog, and
several chapbooks exist showcasing the work of various poets using Gnoetry. A favored technique, as with
Markov chain poetry, is to mix together the styles of several contrasting works [31].

The notion of human and computer cooperation also appears in the development of creativity support
tools. Kantosalo et al. , for example, have a system to help elementary school students write poetry, which
suggests possible words in a magnetic poetry format [15].

Computer Enhancement

The other way to enhance computational poetry is to add advanced concepts from computer science: not
merely generating words, but making sophisticated attempts to optimize the output. This set of methods
comes not from the humanities but from scientists in the discipline of computational creativity. While a
variety of AI techniques can be brought to bear on these problems, there are two main purposes. One is
optimization of the system’s output on some metric; the other is connection of the generation apparatus to
underlying knowledge about the world.

Importantly, all computational poetry systems we analyzed begin with one of the mere generation tech-
niques discussed above. Template generation is most common [5, 24, 33, 34, 32], but the McGonagall system
[21, 19, 20] uses a technique similar to context-free grammar, while DopeLearning [18] (recombining lines
from rap songs) and our own TwitSong [17] (recombining lines from Twitter) are found poetry systems. What
distinguishes all these systems from mere generation systems is that something—optimization, a knowledge
base, or both—is added to the basic technique, either following the mere generation step or incorporated into
it as guidance.
Data mining and knowledge representation. Merely generated poetry tends towards nonsense; whether
artistically desired or not, this is a result of the computer’s lack of real-world experience. By representing
semantic facts, an artificially intelligent system can attempt to overcome this limitation. Just as Gnoetry puts
human enhancement inside the generation process rather than adding it on after generation, a knowledge
base can be put inside the generation process to guide its range of output.

One way of representing knowledge is to encode it in propositional logic. One experiment in this vein is
Ruli Manurung’s McGonagall system [20]. When propositions are explicitly encoded, McGonagall creates
very logically consistent poetry, as in the first example below [20]. But when the system is allowed to
construct its own propositions, as in the second example, it lapses into nonsense [21]:

The cat is the cat which is dead.
The bread which is gone is the bread.
The cat which consumed
the bread is the cat
which gobbled the bread which is gone.

They play. An expense is a waist.
A lion, he dwells in a dish.
He dwells in a skin.
A sensitive child,
he dwells in a child with a fish.

Lamb, Brown and Clarke

198



It is not enough for a computer to be able to represent facts; to be anything other than nonsense, these
facts must have some relation to human experience.

Since McGonagall, a few systems in non-English languages have made good strides using semantic
knowledge bases, such as ConceptNet, to widen the range of available propositions [27, 30], but English
systems have not yet fallowed suit. What has been done in English is parsing of word associations. By
calculating the co-occurrence of different words in a source text, computers can gain a sense of which
words are and aren’t related to a given topic. Toivanen et al. create poetry using word associations mined
from Finnish Wikipedia [32] and news stories [33]. Netzer et al. [24] use a list of word associations from
psychological testing. Combining these associations with syntactic templates results in plausible haiku [24]:

cherry tree
poisonous flowers lie
blooming

Veale and Yao [35] search Google N-Grams for similes, which contain implicit information about the
properties of things in the real world. The Full-FACE system [5] modifies these similes to create poems. Its
poetry, while repetitive, is full of comparisons that make sense to a human [5]:

the wild relentless attack of a snake
a relentless attack, like a glacier
the high-level function of eye sockets

Optimization. The other mode of enhancement that computer science has to offer is optimization. Given
some formal definition of the desired traits of a poem, a computer system can begin to, in some sense, think
critically—testing different possibilities, and choosing the ones which best fit its requirements. While this
is a very elementary form of critical thought, it is an important step towards true creativity on the part of
computers: being able to understand one’s own aesthetic and create work to match.

Optimization techniques applied to poetry include stochastic hill-climbing search [19], generate-and-
test [24, 5], genetic algorithms [21], constraint satisfaction [34], case-based reasoning [10], and recurrent
neural networks [18]. The details of these methods are relatively unimportant: each involves setting some
goal as to the desired properties of a poem, and trying multiple possibilities, often building on previous
attempts, until one or more poems are found which are as close to the goal as possible.

What goals do these poetry systems work towards? Many concentrate on basics such as meter, rhyme,
and grammaticality [19, 24, 34]. However, a more exciting possibility is setting goals for the subject matter,
emotions, or artistic style of a poem—traits which can be measured through natural language processing
techniques. ASPERA [10], for example, includes mood as one of its constraints. DopeLearning [18] gener-
ates rap lyrics according to a variety of textual measures, including the maximization of complex, internal,
and multisyllabic rhymes, and uses a deep learning neural net to represent semantic content. The Full-FACE
system [5] chooses between possible goals, including relevance to the poem’s topic, emotion, and some
stylistic constraints. TwitSong [17] also selects tweets according to their topic relevance, sentiment, and the
presence of sensory imagery: this results in poems composed of tweets which, while written by different
people at different times, nonetheless come together into something reasonably coherent [17]:

Hey Nashville...2014 is pretty awesome!
Happy 2014 friends! Be safe out there!!
Had a great New Years Eve at Magic Kingdom
We started off 2014 with a prayer

The science of computational creativity is in its infancy, and these are small steps compared to the

A Taxonomy of Generative Poetry Techniques

199



complex goal-setting process of skilled human poets. Nonetheless, further refinements in goal specification
and knowledge representation could produce truly interesting generative poetry.

Generalization and Comparison With Music

Our taxonomy is more interesting if its principles can be generalized to other domains. An obvious example
would be other domains of digital poetry, such as those described in [6, 8]. Certainly many such poems
combine the kind of generation that is of interest to us with hypermedia techniques, which can themselves
be seen as a form of either human or computer enhancement, applied to the poems mode of presentation
rather than to its words. Nick Montfort and Stephanie Strickland’s “Sea and Spar Between”, for example,
uses a handcrafted grammar (a mere generation technique) to combine phrases from Emily Dickinson and
Herman Melville’s work, and displays these phrases using a combinatorial framework which could only be
accomplished using the calculating power of a computer [22].

However, in our specific research program we are more concerned with whether our taxonomy is gen-
eralizable to computational creativity as a whole, outside the domain of text altogether. To investigate this
question, we will look very briefly at the field of generative music. Our taxonomy—Mere Generation, Hu-
man Enhancement, and Computer Enhancement—does apply to music, with a few interesting modifications.
Mere Generation. Like poetry, music can be composed using a Markov model trained on the note sequences
of existing music [7, 26]. Other ways of generating music include cellular automata [37], a random trajectory
in a directed graph [29], or even producing music from a visual image as if it were a spectrogram [14]. What
these techniques have in common is that, as with mere generation in poetry, the output of the algorithm is
not optimized. The program simply produces notes according to its rules.
Human Enhancement. The Human Enhancement category in music is most noticeable in jazz improvisa-
tion. Computer Improvisation systems are built to play alongside human improvisers. They need to both
process human musical input in real time and respond to that input with novel sequences of notes [2]. A
more avant-garde alternative is the creation of digital instruments. An instrument’s responses to human input
can be non-obvious or shifting, which results in unpredictable interactions between the musician and the
instrument [36]. Like Gnoetry, improvisation systems and digital instruments can create new works through
interaction which neither the computer nor the human could have created on their own.
Computer Enhancement. As with poetry, the output of mere generation can be fit to hard and soft op-
timization constraints using techniques such as Answer Set Programming [25] or genetic algorithms [29].
Such constraints can be rooted in music theory [25, 29], or a specific goal, such as making cover songs
incorporate features of the original [26]. Due to the non-representational nature of music, it is more difficult
to find generative music that incorporates a semantic knowledge base.

The main difference between generative poetry and generative music is that in we see systems in which
human and computer enhancement are combined. Systems can, for example, improvise with human partners
and use machine learning to optimize that improvisation [2]. There is no a priori reason that this could not
also be done with poetry; its presence in music is likely the sign of a more mature research field.

Conclusion

In our taxonomy, there are three areas of work in generative poetry: a mere generation technique, human
extensions to the technique, and computer extensions to the technique. We believe that when critics such
as Funkhouser declare that generative art has reached a plateau, it is because they are looking only at mere
generation and not at the more powerful computational techniques which enhance it. Artistic optimization
and knowledge representation techniques have not yet reached their full potential, but they have the power

Lamb, Brown and Clarke

200



to push generative poetry forward towards the kinds of sense and style that are currently lacking. Far from
being a played-out form, generative poetry is just getting started.

References

[1] Ranjit Bhatnagar. Pentametron, 2012. http://pentametron.com, accessed December 9, 2015.

[2] Oliver Bown. Player responses to a live algorithm: Conceptualising computational creativity without
recourse to human comparisons? In Proceedings of the Sixth International Conference on Computa-
tional Creativity, pages 126–133, 2015.

[3] Jim Carpenter. Public override void, 2004. https://slought.org/resources/public_

override_void, accessed December 9, 2015.

[4] Jim Carpenter. etc4 (blog post), 2007. http://theprostheticimagination.blogspot.ca/2007/
07/etc4.html.

[5] Simon Colton, Jacob Goodwin, and Tony Veale. Full face poetry generation. In Proceedings of the
Third International Conference on Computational Creativity, pages 95–102, 2012.

[6] Jeremy Douglass. Numeracy and electronic poetry. Journal of Mathematics and the Arts, 8(1-2):13–23,
2014.

[7] Arne Eigenfeldt. Generative music for live musicians: An unnatural selection. In Proceedings of the
Sixth International Conference on Computational Creativity, pages 142–149, 2015.

[8] Chris T Funkhouser. New Directions in Digital Poetry. A&C Black, 2012.

[9] Christopher Thompson Funkhouser. Prehistoric digital poetry: an archaeology of forms, 1959-1995.
University Alabama Press, 2007.

[10] Pablo Gervás. An expert system for the composition of formal Spanish poetry. Knowledge-Based
Systems, 14(3):181–188, 2001.

[11] Pablo Gervás. Exploring quantitative evaluations of the creativity of automatic poets. In Workshop
on Creative Systems, Approaches to Creativity in Artificial Intelligence and Cognitive Science, 15th
European Conference on Artificial Intelligence, 2002.

[12] Nada Gordon. Unicorn believers don’t declare fatwas. Poetry, July/August 2009.

[13] Jacob Harris. Times haiku: Serendipitous poetry from the New York Times. http://haiku.

nytimes.com/, accessed December 9, 2015.

[14] Eric Heep and Ajay Kapur. Extracting visual information to generate sonic art installation and perfor-
mance. In Proceedings of the 21st International Symposium on Electronic Art, 2015.

[15] Anna Kantosalo, Jukka M Toivanen, Ping Xiao, and Hannu Toivonen. From isolation to involvement:
Adapting machine creativity software to support human-computer co-creation. In Proceedings of the
Fifth International Conference on Computational Creativity, pages 1–7, 2014.

[16] Alison Knowles and James Tenney. A sheet from ‘The House’, a computer poem, 1968. qtd. in
(Funkhouser, 2007).

[17] Carolyn E Lamb, Daniel G Brown, and Charles LA Clarke. Can human assistance improve a compu-
tational poet? In Proceedings of BRIDGES, pages 37–44, 2015.

[18] Eric Malmi, Pyry Takala, Hannu Toivonen, Tapani Raiko, and Aristides Gionis. Dopelearning: A
computational approach to rap lyrics generation. arXiv preprint arXiv:1505.04771, 2015.

[19] Hisar Manurung, Graeme Ritchie, and Henry Thompson. Towards a computational model of poetry
generation. Technical report, The University of Edinburgh, 2000.

A Taxonomy of Generative Poetry Techniques

201

http://pentametron.com
https://slought.org/resources/public_override_void
https://slought.org/resources/public_override_void
http://theprostheticimagination.blogspot.ca/2007/07/etc4.html
http://theprostheticimagination.blogspot.ca/2007/07/etc4.html
http://haiku.nytimes.com/
http://haiku.nytimes.com/


[20] Hisar Maruli Manurung. Chart generation of rhythmpatterned text. In Proc. of the First International
Workshop on Literature in Cognition and Computers, pages 15–19, 1999.

[21] Ruli Manurung, Graeme Ritchie, and Henry Thompson. Using genetic algorithms to create meaningful
poetic text. J Exp Theor Artif In, 24(1):43–64, 2012.

[22] Nick Montfort and Stephanie Strickland. Sea and spar between. Dear Navigator, 2, 2010.
[23] John Morris. Haiku—at random, 1973. qtd. in (Funkhouser, 2007).
[24] Yael Netzer, David Gabay, Yoav Goldberg, and Michael Elhadad. Gaiku: Generating haiku with word

associations norms. In Proceedings of the Workshop on Computational Approaches to Linguistic Cre-
ativity, pages 32–39. Association for Computational Linguistics, 2009.

[25] Sarah Opolka, Philipp Obermeier, and Torsten Schaub. Automatic genre-dependent composition using
answer set programming. In Proceedings of the 21st International Symposium on Electronic Art, 2015.

[26] Graham Percival, Satoru Fukayama, and Masataka Goto. Song2quartet: A system for generating string
quartet cover songs from polyphonic audio of popular music. In The International Society of Music
Information Retrieval, pages 114–120, 2015.

[27] Ananth Ramakrishnan A and Sobha Lalitha Devi. An alternate approach towards meaningful lyric
generation in tamil. In Proceedings of the NAACL HLT 2010 Second Workshop on Computational
Approaches to Linguistic Creativity, pages 31–39. Association for Computational Linguistics, 2010.

[28] Antonio Roque. Language technology enables a poetics of interactive generation. Journal of Electronic
Publishing, 14(2), 2011.

[29] Marco Scirea, Peter Eklund, and Julian Togelius. Toward a context sensitive music generator for affec-
tive state expression. In Proceedings of the Sixth International Conference on Computational Creativ-
ity, 2015. Late-breaking abstract.

[30] Von-Wun Soo, Tung-Yi Lai, Kai-Ju Wu, and Yu-Po Hsu. Generate modern style chinese poems based
on common sense and evolutionary computation. In 2015 Conference on Technologies and Applications
of Artificial Intelligence (TAAI), pages 315–322. IEEE, 2015.

[31] eRoGK7 et al. Gnoetry daily. https://gnoetrydaily.wordpress.com, accessed December 9,
2015.

[32] Jukka Toivanen, Hannu Toivonen, Alessandro Valitutti, Oskar Gross, et al. Corpus-based generation of
content and form in poetry. In Proceedings of the Third International Conference on Computational
Creativity, pages 175–179, 2012.

[33] Jukka M Toivanen, Oskar Gross, Hannu Toivonen, et al. The officer is taller than you, who race
yourself! Using document specific word associations in poetry generation. In Proceedings of the 5th
International Conference on Computational Creativity, pages 355–359, 2014.

[34] Jukka M Toivanen, Matti Järvisalo, Hannu Toivonen, et al. Harnessing constraint programming for po-
etry composition. In Proceedings of the Fourth International Conference on Computational Creativity,
pages 160–167, 2013.

[35] Tony Veale and Yanfen Hao. Exploiting readymades in linguistic creativity: A system demonstration
of the jigsaw bard. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Systems Demonstrations, pages 14–19, 2011.

[36] Victor Zappi and Andrew McPherson. The D-Box: How to rethink a digital musical instrument. In
Proceedings of the 21st International Symposium on Electronic Art, 2015.

[37] Mo H Zareei, Dale A Carnegie, and Ajay Kapur. Noise square: Physical sonification of cellular au-
tomata through mechatronic sound-sculpture. In Proceedings of the 21st International Symposium on
Electronic Art, 2015.

Lamb, Brown and Clarke

202

https://gnoetrydaily.wordpress.com

