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Abstract
I demonstrate simple graphing methods for functions in the 2D plane that capture essential features of the functions
while being aesthetically pleasing. Instead of solid curves or geometric shapes, my approach generates dithered
shades directly by mapping large numbers of individual points. Multi-colour composites of these graphs can be used
for more elaborate constructs, such as iterated function systems.

Introduction

Iterated function systems (IFS) are a common tool for visualizing Julia sets. In the classic example of the
complex polynomial pc(z) = z2 + c, it is first inverted to form the IFS{

f1(z) =
√
z − c

f2(z) = −
√
z − c

(1)

Random points iterated with this IFS will then converge towards points in Jc, the Julia set of the polyno-
mial pc. Known as the Inverse Iteration Method (IIM), this approach is noted for its speed, but the uneven
point density in the resulting graphs is often regarded as a drawback. Methods such as Modified IIM have
been developed to overcome this issue and produce solid, connected graphs. [2], [6, pp. 173-178]

Figure 1 : IFS iterations of the Julia set J−i with
the initial disc B(0, 1)

However, in my algorithmic art (for example
Figure 1) I celebrate unevenness. I appreciate the
delicate, veil-like textures of IIM over a solid tech-
nical look. In fact, the aesthetic power of image
dithering or halftoning has been known for cen-
turies, from the art of mezzotint to computer graph-
ics [1]. Besides, as the point density reflects the
properties of the functions themselves, such graphs
may also have educational value.

As I exploit the varying point density for artis-
tic purposes, I also use multiple colours to demon-
strate the different stages of iteration in a single
graph. In addition, I explore the effects of different
initial sets on the final works. This paper outlines
all of these steps I use to create my art.

Throughout the text, I use the Julia set IFS (1)
with c = −i as an example. The resulting graphs
(Figures 1, 4(a), and 4(b)) represent not only the
set J−i, but also the processes of getting there from
the various initial sets.

While this paper only refers to Julia sets, my method is readily applicable to any IFS. In fact, it is not
limited to complex numbers or even the 2D plane.

Bridges Finland Conference Proceedings

533

http://algoristo.com/


Basic Method and the Gradient Effect

To find the image of a geometric shape under a function, the following simple method turns out to have
surprising benefits. It automatically generates variable, dithered colours based on the function in question.

1. Choose an initial shape, such as the origin-centred unit disc B(0, 1)

2. Fill the shape with random points of a uniform distribution

3. Compute the image points with the given function or IFS. For the latter, I usually prefer the random-
game method: one function of the IFS is randomly chosen for each point.

From our IFS (1) with c = −i, consider the first function f1(z) =
√
z + i. Its derivative increases as we

approach the point z = −i, so the images of nearby points end up further apart. Given their initial uniform
distribution, this generates colour intensities inversely proportional to the derivative (Figure 2). In computer
graphics, such varying shades would be called gradients; here they have a simple relation to the gradient or
derivative of the original function.

(a) A = uniform random sampling of B(0, 1) (b) f1(A) := {
√
z + i | z ∈ A}

Figure 2 : Density variations in the complex plane due to the square root function

Illustrations of complex functions in 2D are never without compromises. A complete C→ C plot would
require four dimensions, or possibly a range of colours for the phase information. However, this method can
express some of that complex information in a simple monochrome plot.

Colouring Iterations

To visualize iterated function systems, I simply repeat step 3. Using the Julia set IFS (1) with c = −i, the
set J−i begins to take form after a few iterations (Figure 3).

For colouring the results, I was inspired by the escape-time method of fractal graphics, where colours
are assigned by the number of iterations (also known as the Level Set Method [2]). Here the iterations carry
a very different meaning, but the same idea applies. I simply lay the graphs of iterates on top of each other,
using a different colour for each.
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Figure 3 : B(0, 1) and its first iterations under the Julia set IFS of J−i

In the resulting composite graph (Figure 1), the early stages of the iteration form a kind of shadow or
halo around the final form, while tracing its course of evolution. This is made possible by the contractive
nature of the functions: the later stages cover a smaller effective area. Meanwhile, as the random-game
method maintains the number of points between iterations, colours are more concentrated in the final stages.

Effects of Initial Shapes

As shown by Hutchinson [4], the limit set of an IFS is independent of the initial set, provided the IFS is
contractive and the initial set is compact. This is also true at a practical level, with finite iterations and a
suitably bounded IFS. However, the choice of the initial set is very apparent in the early iterations. For
example, the square [−1, 1]2 becomes rather jagged under the example IFS (Figure 4(a)).

Colour Mixing Effects

A Gaussian distribution of points makes a particularly interesting initial set. The lack of a defined edge is
maintained throughout iterations with smooth functions such as the Julia set IFS. When combined into a
single graph, the individual iterations are no longer discernible from the fluid mass of colours (Figure 4(b)).
It may bring to mind the smoothly coloured escape-time graphs of Julia sets, while being rather different
in spirit. This effect of mixing colours is also apparent with simpler initial sets, especially when the point
density varies smoothly over a large area.

Summary

A simple pointwise approach generates powerful visualizations of functions in two or more dimensions.
Gradients of functions turn into image gradients simply by mapping individual points, without any additional
algorithms. This method can also be applied in succession to generate IFS fractals. For further instructive
and artistic depth, several iteration stages can be overlaid together in colour. Different initial sets provide yet
another dimension to explore.
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(a) Square initial set [−1, 1]2 (b) Gaussian initial set centred at origin with unit std. deviation

Figure 4 : IFS iterations of the Julia set J−i
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