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Abstract
In this paper, we propose a system which enables us to create computer graphics arts originating from Kleinian
groups easily and intuitively. Using this system, we can realize various types of Möbius transformations by arranging
some circles and lines on the plane. The system uses the efficient rendering algorithm called IIS, introduced in the
previous paper by the authors. In the 3D space, making a change circles and lines into spheres and planes, we extend
the system to the 3D graphics of Kleinian groups.

Introduction

A Möbius transformation on the complex plane is defined by a linear fractional transformation. Kleinian
group theory is one of the fields of mathematics studying Möbius transformations. In the past decade,
graphics of the limit set and the orbits of Kleinian groups have emerged as objects of interest because they
frequently have a fractal structure. In addition, these beautiful, artistic objects occupy a space between
mathematics and art. Indra’s Pearls [1] is a book describing Kleinian groups from this viewpoint.
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Figure 1: The process of rendering the orbit of Schottky disks

As a simple example, we start with circle inversion fractals as shown in Figure 1f. Nesting disks are
transformed images of disks by iterations of the circle inversions. We call them the orbit of Schottky disks
and the limits of disks the limit set. The process of the transformation is as follows.

1. We need some disjoint disks to obtain circle inversion fractals. For example, we assume that there are
four disks as shown in Figure 1a, and we call them Schottky disks and their boundary Schottky circles.

2. Now we focus on the white Schottky circle in Figure 1b. The inversion in the white circle moves the
outer three disks into the interior of the white circle.

3. After we apply each inversion in the Schottky circle to the outer disks, we obtain twelve small disks.
They are shown in Figure 1c.

4. Next, we invert the twelve small disks in the Schottky circles. The inversion in the white Schottky
circle moves the outer nine small disks into the interior of the white circle as shown in Figure 1d. Each
inversion in the Schottky circle generates smaller disks, and we obtain Figure 1e.

5. We continue iterating these process, that is, we continue applying each inversion in the Schottky circle
to resulting smaller disks. Finally, we get Figure 1f.
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Generally, to render such figures, we have to calculate coordinates and radii of all of the circles. Here we
consider the group generated by the inversions in the Schottky circles. We enumerate elements of the group
and transform original circles by these elements. To do so, we have to traverse the Cayley graph of the group
with a breadth first search. For more details, see the chapter 4 of Indra’s Pearls [1]. However, such a method
has a fault that if we increase Schottky circles, computational complexity increases exponentially. To solve
the problem, we introduced the algorithm called Iterated Inversion System (IIS) in the previous paper [2].
The algorithm can be applied to each point on the plane and allows us to get the nesting depth of the disk
which contains the point. It is easy to implement IIS in parallel, which enables us to render circle inversion
fractals in real time. Also, we can extend the fractals to 3D space using sphere inversions.

Our first example used only circle inversions. Other interesting images can be generated using more
complicated Möbius transformations. It is known that we can construct any Möbius transformation out of
inversions [3]. Thus, we can apply IIS to visualize fractals combining circle inversion fractals and Möbius
transformation groups. Moreover, we can tweak parameters of Möbius transformations easily by arranging
some circles and lines on the plane. In this paper, we introduce how to apply IIS to Möbius transformations
using inversions. The first author is developing a web application called Schottky Link 1. It enables us to
render fractals shown in this paper intuitively. See also the Shadertoy page 2 for some sample codes.

Möbius Transformations and Inversions

Möbius transformations are defined in the extended complex plane, Ĉ = C ∪ {∞} and expressed as linear
fractional transformation f(z) = az+b

cz+d , where a, b, c, d, z ∈ Ĉ. However, it is also known that we
can construct them out of a finite composition of inversions. For more details, see the introduction of [3].
Möbius transformations are classified into three types as loxodromic, parabolic, or elliptic. Loxodromic
transformations have two fixed points and are conjugate to scaling by complex numbers except for scaling
by unit complex numbers. Those whose multiplier is a positive real number are also called hyperbolic
transformations. Parabolic transformations have one fixed point and are conjugate to parallel translations.
Elliptic transformations have two fixed points and are conjugate to rotations.

An inversion in a circle is defined as f(z) = r2

z−c
+ c, where c and r are center and radius of the circle.

Note that an inversion in a circle with infinite radius is the same as a reflection over a line. Also, sphere
inversion can be derived from a similar equation, and an inversion in a sphere with infinite radius is the same
as a reflection through a plane.

Iterated Inversion System

Figure 2: The orbit of Schottky disks and the orbit
of the point generated by IIS

(a) Generator (b) Orbit

Figure 3: The orbit of the base sphere

1 Schottky Link: https://schottky.jp 2 Shadertoy: https://www.shadertoy.com/user/soma_arc
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In this section, we will briefly explain IIS. It is applied to each point on the plane and computes the
nesting depth of the disk which contains the point. The algorithm is as follows. If the point is contained
in one of the Schottky circles, we invert the point in that circle. We continue iterating this process until
the transformed point is in the fundamental domain. The fundamental domain is the exterior area of all of
the Schottky circles. Finally, we color the pixel according to the number of iterations of inversions. Now
we consider the circle inversion fractal as shown in Figure 2. In Figure 2, the fundamental domain is the
black area. Figure 2 also shows the orbit of the blue point generated by IIS. The point has two iterations
of inversions to reach the fundamental domain. Thus, we find that the point is in the second level depth of
the nesting disks. Remember, the points closer to the limit set require the larger number of inversions to get
into the fundamental domain. Furthermore, a point actually at the limit set never reaches the fundamental
domain. So, we have to determine the maximum number of iterations in advance to prevent the algorithm
from running indefinitely.

Later, we will introduce generators other than simple inversions. We consider a map G such that G is
an identity for a point in the fundamental domain and that G is a composition of inversions for other points.
The generalized pseudo-code is in Algorithm 1.

Algorithm 1 Iterated Inversion System (IIS)

Require: count = 0 and coordinates = position determined by pixel
for i = 0 to MAX INVERSION do

inFundamentalDomain← true
for each Map G in Maps do

if G is available to coordinates then
coordinates← G(coordinates)
INCREMENT count
inFundamentalDomain← false

end if
end for
if inFundamentalDomain then

BREAK for
end if

end for
RETURN count

Figure 4: XY-slice image of Figure 3 Figure 5: Figure 3b with artifacts

We can use the same code to draw sphere inversion fractals. However, it is difficult to render nesting
spheres efficiently, and the rendered images do not interest us. Thus, we render the orbit of another sphere.
See Figure 3a. We call gray spheres Schottky spheres and a green sphere a base sphere. We focus on render-
ing the orbit of the base sphere transformed by compositions of inversions in the Schottky spheres. Figure 3b
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shows the orbit. We use ray marching and distance estimation to render such figures efficiently. Ray march-
ing is a kind of ray tracing technique to calculate an intersection of a ray and objects approximately. A ray
is something like a vector. First of all, we set the origin of the ray to the position of the camera and direction
of the ray to the direction to each pixel on the screen from the camera. Each pixel is colored according to the
first object the ray hits. In regular ray tracing, we calculate the intersection algebraically. On the other hand,
in ray marching, we march the “tip” of the ray along the direction of the ray step by step. To check how far
the tip of the ray is from the objects, we need a distance function. However, in regard to fractal rendering,
it is difficult to get an actual distance to its shape. So, we use lower estimated distance as a return value of
the distance function. The technique to approximate distance is called distance estimation. For more details
about ray marching and fractal rendering, see the blog post 3 by Christensen.

Algorithm 2 Distance Function
Require: count = 0, d = MAX DISTANCE, dr = 1.0, and coordinates = tip of the ray

for i = 0 to MAX INVERSION do
inFundamentalDomain← true
for each Map G in Maps do

if G is available to coordinates then
dr ← dr∗ (Jacobian of G(coordinates))
coordinates← G(coordinates)
INCREMENT count
inFundamentalDomain← false

end if
end for
if inFundamentalDomain then

BREAK for
end if

end for
for each BaseSphere S in BaseSpheres do
d← min(d, scalingFactor ∗ (distance(coordinates, S.center) − S.radius) / (absolute value of dr))

end for
return d

In order to prepare a distance function to render the orbit of base spheres, for the sake of simplicity, we
consider a slice image of Figure 3. See Figure 4. This image shows the XY-slice of the orbit of spheres.
Orange disks are slices of the orbit of Schottky spheres. Slices of the orbit of the base sphere are colored in
the same color as the orbit shown in Figure 3b. C is the white circle, the boundary of the Schottky sphere.
S1 is the base sphere and the inversion of S2 in the circle C. The white point P1 is the inversion of P2 in
the circle C. Now we assume that the tip of the ray is at P2. Let’s calculate the minimum distance between
P2 and the orbit of base spheres. The nearest sphere to P2 is S2. So, we have to calculate the distance
between P2 and S2. We call the distance d. However, we do not know the center and radius of S2. So, we
calculate d from a distance between S1 and P1. Inversions in spheres and Möbius transformations do not
preserve Euclidean distance. Thus we use the Jacobian (sometimes referred to as the Jacobian determinant)
to estimate the distance. The equation to calculate the Jacobian of an inversion is as follows. Let S be the
center of the Schottky sphere, let R be its radius, and let P be a point before applying the inversion in S.
Jacobian = R2/distance(P, S)2. Note that the Jacobian of the inversions in a sphere with infinite radius
is 1. We accumulate the Jacobian of inversions by multiplying the Jacobian for every inversion. Finally, we
3 Mikael H Christensen, Distance Estimated 3D Fractals (Part I):
http://blog.hvidtfeldts.net/index.php/2011/06/distance-estimated-3d-fractals-part-i/
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divide the distance between the base sphere and the point on the fundamental domain by the accumulated
Jacobian, and we can get the approximated distance between the tip of the ray and the nearest sphere. For the
above case, we get an inequality d ≥ distance(P1, S1)/Jacobian. The formula gives a lower bound for
spheres. For more details on the derivation of this estimation formula, see the blog post 4 by Inigo Quilez.

We have one more thing to consider because the above calculation is a rough estimate. If a given point
is in the outer area of the limit set, the ray can pass through the objects unintentionally. This is because
the point is inverted to the outer fundamental domain, and the distance function returns an unintentionally
large distance. This causes artifacts as shown in Figure 5. The fore part of the object is not rendered. In
order to avoid this problem, we shrink the length of estimated distance. It increases the number of steps of
ray marching, but we can eventually obtain the intersection of the ray and the spheres. The scaling factor is
determined experimentally according to the size of the spheres. The generalized pseudo-code for a distance
function is in Algorithm 2.

2D Generators

(a) Generator (b) Orbit

Figure 6: Inversion in the circle with
infinite radius and four Schottky disks

(a) Generator (b) Orbit

Figure 7: Parallel translation generator and four
Schottky disks

(a) Generator (b) Orbit

Figure 8: Rotation generator and three Schottky disks

(a) Generator (b) Orbit

Figure 9: Hyperbolic generator and a Schottky disk

Inversion in a Circle with Infinite Radius. An inversion in a circle with infinite radius is treated as a
reflection over a line. See Figure 6a. The four Schottky disks are lying on the right side, and there is the
orange region on the left side. The region is a disk with infinite radius, that is, a half plane. Its boundary is
colored with a white line. The orbit of the group is shown in Figure 6b. As we can see, it is generated by the
reflection over the white line.
4 Inigo Quilez, distance estimation to implicits: http://www.iquilezles.org/www/articles/distance/distance.htm

A Geometrical Representation and Visualization of Möbius Transformation Groups
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(a) Generator (b) Orbit

Figure 10: The orbit of Parabolic generator and
a Schottky disk

(a) Generator (b) Orbit

Figure 11: Loxodromic generator and a Schottky disk

Parallel Translation. A composition of reflections over two parallel lines facing each other generates a
parallel translation. See Figure 7a. There are two orange half planes on the right and left sides. They are the
disks with infinite radius. The orbit is shown in Figure 7b. Parallel translation is a parabolic transformation.
Rotation. A composition of reflections over two crossing lines generates a rotation. The generator is shown
in Figure 8a. The disks with infinite radius are crossing. The boundary of the disks are colored with white,
and the rotation axis is crossing point of two white lines. The orbit is shown in Figure 8b. It has a rotation
symmetry. Rotation is an elliptic transformation.
Composition of Two Circles. Next, we use a composition of inversions in two circles. See Figure 9a. There
are one Schottky disk and three regions colored with red, green, and blue. We call the boundary of red disk
C1, the outer circle of green region C2, and the outer circle of blue region C1′, and let C1′ be the inversion
of C1 in C2. The generator is composed of C1, C2, and C1′. While C1 and C2 have no intersection,
the composition of inversions in C1 and C2 represents hyperbolic transformations 5. The orbit is shown in
Figure 9b. The orbit of the disk converges to two fixed points. We compose the map G as follows. The prefix
I represents an inversion, for example, IC1 represents an inversion in C1.

G =

{
IC2 ◦ IC1 (The point is inside of C1)

IC1 ◦ IC2 (The point is outside of C1′)

In the process of IIS, we can transform the point to the fundamental domain by applying G repeatedly. The
fundamental domain of this type of generators is the blue and green area. Then, we displace C1. When C1
and C2 are kissing as shown in Figure 10a, this generator becomes a parabolic transformation 6. The fixed
points overlap each other, and the orbit converges to the point as shown in Figure 10b.
Loxodromic. We can twist the orbit by adding another two inversions. See Figure 11a. The yellow disk and
the white line are added to the hyperbolic generator. The white line is a line with two centers of C1 and C2.
We call the line L, the boundary of the yellow disk C3, and light blue point P . P is a user-defined control
point, and the circle C3 is determined by three points, one is the point P , and the others are inversions of P
in C1 and C2. L and C3 are perpendicular to C1 and C2. A composition of the reflection over L and the
inversion in C3 represents a rotation. Thus, the orbit of the group is twisted as shown in Figure 11b, and this
is a loxodromic transformation 7. The map G is as follows.

G =

{
(IC2 ◦ IC1) ◦ (IC3 ◦ IL) (The point is inside of C1)

(IL ◦ IC3) ◦ (IC1 ◦ IC2) (The point is outside of C1′)

5 https://www.shadertoy.com/view/MsScWW 6 https://www.shadertoy.com/view/XsBcDD
7 https://www.shadertoy.com/view/lsSyDW

Nakamura and Ahara

164

https://www.shadertoy.com/view/MsScWW
https://www.shadertoy.com/view/XsBcDD
https://www.shadertoy.com/view/lsSyDW


(a) Generator (b) Orbit

Figure 12: Inversion in the sphere with infinite radius,
four Schottky spheres, and a base sphere

(a) Generator (b) Orbit

Figure 13: Parallel translation generator, six Schottky
spheres and a base sphere

(a) Generator (b) Orbit

Figure 14: Compound parabolic generator, six
Schottky spheres and a base sphere

(a) Generator (b) Orbit

Figure 15: Rotation generator, four Schottky spheres,
and a base sphere

(a) Generator (b) Orbit

Figure 16: Hyperbolic generator and a base sphere

(a) Generator (b) Orbit

Figure 17: Parabolic generator and a base sphere

(a) Hyperbolic (b) Parabolic

Figure 18: The orbit generated by a composition
of two spheres and six Schottky spheres

(a) Generator (b) Orbit

Figure 19: Compound loxodromic generator and a
base sphere
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3D Generators

Inversion in a Sphere with Infinite Radius. An inversion in a sphere with infinite radius is represented by
a reflection through a plane. See Figure 12a. There are four Schottky spheres, one base sphere, and one blue
plate. The blue plate is a part of a sphere with infinite radius. The orbit of the group is shown in Figure 12b.
The resulting orbit has a reflection symmetry.
Parallel Translation 8. A composition of inversions in two parallel planes represents a parallel translation
along a normal vector of the planes. See Figure 13. This is a parabolic transformation. Moreover, in 3D, we
can add a twist to the orbit. See Figure 14. The orbit is rotated around the normal vector of the planes for
every translation. This operation is possible in 3D space, because we have gained a degree of freedom over
2D space. The transformations yielding twisted orbits are called compound parabolic transformations.
Rotation. A composition of reflections through two crossing planes generates a rotation. The axis of rotation
is the intersection line of two planes. The generators and the orbit are shown in Figure 15.
Composition of Two Spheres 9. We compose generators using two spheres. See Figure 16a. We call the
light red sphere S1, the light green sphere S2, and the blue sphere S1′. The map G is as follows.

G =

{
IS2 ◦ IS1 (The point is inside of S1)
IS1 ◦ IS2 (The point is outside of S1′)

While S1 and S2 have no intersection, the generator is hyperbolic transformation. The orbit of the base
sphere is shown in Figure 16b. When S1 and S2 come in contact with each other at one point as shown
in Figure 17a, it becomes a parabolic transformation. The orbit of spheres touches at the fixed point. The
orbit is shown in Figure 17b. Also, Figure 18 shows the example of the more complicated orbit of spheres
generated by adding six Schottky spheres to the group shown in Figure 16 and Figure 17.
Compound Loxodromic 10. Finally, we add two spheres perpendicular to S1 and S2. See Figure 19a. We
call pink sphere S3 and yellow sphere S4, and there are three user-defined control points P , Q1, and Q2.
S3 and S4 are determined by four points. Let P ′ and P ′′ be inversions of P in S1 and S2. The spheres and
the map G are as follows.

S3 = Sphere(P, P ′, P ′′, Q1) S4 = Sphere(P, P ′, P ′′, Q2)

G =

{
(IS4 ◦ IS3) ◦ (IS1 ◦ IS2) (The point is inside of S1)
(IS2 ◦ IS1) ◦ (IS3 ◦ IS4) (The point is outside of S1′)

The composition of inversions in S3 and S4 represents rotation. The twisted orbit shown in Figure 19b is
analogous to the loxodromic transformations in 2D. Therefore, we call this generator compound loxodromic.
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