
A Mathematics and Digital Art Course

Vincent J. Matsko
University of San Francisco

vince.matsko@gmail.com

Abstract
In the Fall 2016 semester, a Mathematics and Digital Art course was taught at the University of San Francisco for the
first time. After a brief overview, course content for the first half of the semester is presented chronologically. Then
the use of Processing and student Final Projects is discussed, as these two course components comprised the second
half of the course. The intent is to give someone interested in teaching such a course a sense of what it would look
like in practice. Several examples of student work are also presented.

Overview of the Course

I would like to share my experience with designing and implementing a digital art course for those interested
in developing a similar course. The implementation is presented roughly chronologically in order to give a
sense of what teaching such a course would look like on a week-by-week basis.

In September 2015, I wrote a blog on creativity in mathematics [4]. In addition to blogging about
puzzles and problems, I starting writing about how to create digital art. Later on that Fall semester, when the
department was making a tentative course schedule for the 2016–2017 academic year, I thought: why not
take things one step further and design a course about digital art?

Because my work involved mathematics and coding very heavily, it would not be difficult to make sure
the course had substantial mathematical content – students would not simply be using drop-down menus in
pre-existing image-processing software, but working with code to generate digital images. Here is the course
description I wrote for Mathematics and Digital Art:

What is digital art? It is easy to make a digital image, but what gives it artistic value? This ques-
tion will be explored in a practical, hands-on way by having students learn how to create their own
digital images and movies in a laboratory-style classroom. We will focus on the Sage/Python en-
vironment, and learn to use Processing as well. There will be an emphasis on using the computer
to create various types of fractal images. No previous programming experience is necessary.

Broadly speaking, the course was a digital art laboratory. The class was held in computer lab, so
students were creating images almost every day. Students explored most topics in the Sage environment [6]
– classes usually began with a brief presentation followed by work on the computer. All the Sage worksheets
are available on the course website [5].

I should point out a few of the advantages of my particular circumstances, as they directly impacted the
quality of the course. First, the course was offered as part of our First-Year Seminar program, where courses
are kept small so students get to know one particular instructor fairly well. Second, there was a First-Year
Seminar Assistant program, so I was able to have a student assistant in class each day who earned course
credit for helping me. My assistant (Nick) knew Python and was a double major in mathematics and art – and
also presented at Bridges 2016 – so was an ideal candidate for the position. His assistance was invaluable.
Although we had nine students, we might have easily worked with 20–25 students. And third, I was able to
have my class in a computer laboratory, which made demonstrations and in-class work especially easy.

Bridges 2017 Conference Proceedings

261



Sequence of Topics for the First Half of the Semester

First, we discussed color. My inspiration was Interaction of Color by Josef Albers [1]; his work is accessible
to beginners. We explored color in relation to other colors as he did – but this required learning hexadecimal
numbers and RGB values, which most students had heard about but never really understood. I did decide
to work exclusively in the RGB system since we were not making digital prints. (I would like to include
printing in the future, but this requires resources not currently available.)

Students created images as shown in Figure 1. The pieces can be thought of as being composed of
squares subdivided into rectangles; in the left image in Figure 1, for example, there are four squares divided
into two rectangles each. The centers of these rectangles are the same color, and the two border colors are
such that their RGB values average to produce the center color. For example, if the border colors were yellow
and red, the center color would be orange since

1

2
((1, 1, 0) + (1, 0, 0)) = (1, 0.5, 0).

Of course this is not how Albers created his images, since he used pigment – but this method mimics his
style, however simplistically.

Figure 1 : Josef Albers: Andrew’s image (left) and Ella’s image (right).

It was encouraging to see students approach this assignment in ways I had not anticipated. Andrew took
a minimalistic approach, while Ella explored breaking the symmetry of the component squares.

I should remark that this assignment (and most others) included a brief narrative discussing the student’s
choice of parameters. Of course some choices are just a matter of preference (like color choice, perhaps), but
some are more deliberate. It is important that students begin to articulate these thoughts. In addition, since
most assignments involved randomness in some way, the same parameters could produce widely differing
images depending on the seed used for Python’s random number generator. So one aspect of many assign-
ments was generating several different images with different random number seeds, and then choosing the
image which was most aesthetically pleasing.

Next, we looked at various ways randomness can be used to create different visual effects. I wrote a
Sage worksheet which produced an array of circles whose colors and radii could be randomly generated. For
example, if the radius parameter is given by

0.5+ 0.5 ∗ random(),

Matsko

262



no circle will have a radius smaller than 0.5, and the largest circles will have radii close to 1. Similar ideas
can be used to randomly create a range of colors. The larger the coefficient of the random() function, the
greater the parameter range.

Figure 2 : Textures: Adrianna’s image (left) and Maddie’s image (right).

It was interesting to see the wide range of images the class created. Notice how some students, like
Adrianna, avoided having the circles interact all – although her use of the light gray gives the piece a sense of
motion. On the other hand, some students, like Maddie, took advantage of the drawing algorithm (rendering
the circles from left to right, bottom to top) to create a scalloped effect by using larger circles.

Figure 3 : Evaporation.

We then moved on to working with color gradients.
The basis for this topic was one of the first digital pieces
I ever created, Evaporation (see Figure 3). In this piece,
the top of the image is one color, and randomness is grad-
ually added to the RGB values as you move down the
image. Randomness can be added more or less quickly
near the top. In Figure 3, if the top of the image is as-
signed y = 0 and the bottom of the image is assigned
y = 1, then the randomness added to the color of a cir-
cle centered at (x, y) is proportional to y2. By altering the
exponent of y, different color gradients may be produced.
Moreover, randomness is also incorporated by having the
circles be of different radii, very much like the textures
described above.

The effect of the randomness of the circle sizes is
subtle in Evaporation. Students, however, used this ran-
domness to great effect, as shown in Figure 4. Notice
how an initial small radius with a large randomness coef-
ficient, as in Maddie’s image, creates a very different effect than a small randomness coefficient, as seen in
Julia’s image.

The geometry of linear and affine transformations was next. This was an important discussion, since
affine transformations played a rather large part in the course. They served as a basis for a study of fractals
generated by iterated function systems of affine transformations. Beginning with the Sierpinski triangle, the
idea was to show how self-similarity could be described by means of affine transformations, and then use

A Mathematics and Digital Art Course

263



Figure 4 : Color gradient: Maddie’s image (left) and Julia’s image (right).

those transformations to generate an image of the fractal using a Sage worksheet. The algorithm was the
usual iterative one of creating a sequence of points by randomly choosing transformations.

This was challenging for many students, but I designed an interactive Sage worksheet which showed
the effects of any affine transformation on a unit square. Further, not only did students need to describe the
effect of an affine transformation on a unit square, but they also had to write the affine transformation given
a unit square and the parallelogram it is transformed into. There was a strong emphasis on giving the algebra
of matrices a geometric interpretation.

Since students were very familiar with the Sierpinski triangle, I gave an assignment which let them
explore it further. The prompt for this assignment was to create an image which was simultaneously as close
and as far from a Sierpinski triangle as possible. In other words, the image should be identifiable as being
based on a Sierpinski triangle – but just barely. There were many interesting submissions; see Figure 5.

Figure 5 : Sierpinski triangle variation: Adrianna’s image (left), and Safina’s image (right).

The motivation behind this assignment was to have students think more carefully about the affine trans-
formations used in an iterated function system. This assignment required a bit more thought than one where
students just randomly typed in affine transformations and looked at the fractals produced.

A two-week unit on polyhedra was next. This did not relate to the course, really, but I thought it would
be good for students to get some exposure to three-dimensional geometry. However, students remarked
on this apparent disjointedness in their written comments, and so I intend to replace this unit with one on
L-systems. An excellent source for L-systems is [3], which may freely be downloaded as a pdf file.

Matsko

264



Processing

Getting this far took roughly nine weeks. The rest of the semester had two emphases: learning Process-
ing, and undertaking Final Projects. Each week, we would spend Monday and Wednesday working with
Processing, and then students would work on their Final Projects on Friday.

I used the Python mode in Processing, and started students out with simple movies I had created and
had them alter the code to produce different effects. They were interested in the code itself, so I discussed
some of the Processing files one line at a time so they knew what each function call did.

It is not practical to give examples of movies here; there are examples of student work on Day069 of
my blog [4]. The main programming idea used throughout was linear interpolation. Essentially, a movie
is generated as a sequence of individual frames. If a movie had 300 frames (about ten seconds) and you
wanted the background of the first frame to be black and the background of the last frame to be white, you
could interpolate between the colors (0, 0, 0) and (1, 1, 1) to create the effect of the background becoming
lighter and lighter shades of gray. In fact, any feature which is described with a numerical parameter may be
animated using linear interpolation, such as the size of a circle, its location on the screen, and so on. Students
were given assignments which specifically required the use of linear interpolation in different ways.

For in-class work, I made short movies and had students duplicate them exactly. These movies incor-
porated linear interpolation in various ways, so making copies of the movies required students to describe
the linear interpolation mathematically. This was challenging for many students, but in the end, all were
successful.

Finally, the Processing functions mouseX and mouseY return the x- and y-values, respectively, of the
mouse on the Processing screen. This allows for the creation of effects depending on the location of the
mouse, so the user can interact with the movie. Students really enjoyed this feature of Processing, and many
were very creative with its use. Some students used Processing in their Final Projects, although this was not
required.

Final Projects

As mentioned earlier, interwoven with the days creating movies in Processing was work on Final Projects.
About midway through the semester, after they had seen several different ways of creating digital images,
students needed to choose a Final Project to work on. This was a very open-ended assignment – I wanted to
give students as much room for creativity as possible.

I had asked then to submit a project Proposal, but this turned out to be a bit too frustrating. For most
students, the Project only took a final form after three or four weeks of work – they really did need to
experiment and see what directions might prove fruitful. So in future semesters, I do not plan to have a
formal Proposal assignment, but rather informally discuss plans with students individually. As the small
class size allows me to talk with each student every class period, I can easily monitor their progress without
the need for a written Proposal.

As much as possible, I worked to accommodate students’ ideas. Two students wanted to work with
image processing – but the difficulty was that image processing in the Sage environment (which sends com-
putations to a remote server to be evaluated and then returned) was not feasible due to the length of time it
took worksheets to be evaluated.

So Nick (my seminar assistant) took these two students under his wing. This involved researching image
processing libraries in Python, downloading them, getting them to work properly on the students’ laptops,
and making the routines accessible to the students. Not an easy task! Without an assistant, I would not have
been able to give these students the attention they needed to be successful with their projects.

A Mathematics and Digital Art Course

265



Madison (see Figure 6) wanted to experiment with impressionism. We had worked a lot with circles
and color, and she wanted to process photographs (which she had taken herself) by replacing pixels with
small circles. She found that a gray background allowed the colors of the individual circles to stand out, and
worked with circle size to create an impressionistic effect while still maintaining a sense of realism (so that
the original image was still discernible).

Figure 6 : Image processing: Madison’s image (left) and Lucas’s image (right).

Lucas wanted to experiment with color adjustments. He first found various color palettes involving just
a few colors. Then for each pixel in the image, he found the color in a given palette closest to it (using the
usual Euclidean distance formula on the RGB values) and assigned the pixel that color and gave it the same
intensity as in the original image.

Figure 7 : Safina’s Final Project.

Safina wanted to incorporate all of the important
ideas in the course into her project. Work with gra-
dients, color, and Albers-like ideas can all be seen in
Figure 7. But Safina also wanted to add something
new, and she ended up researching how to use turtle
graphics in Python. The regions with the spidery fila-
ments were created this way.

Andrew and Julia were both interested in Josef
Albers (see Figure 8), although they evidently created
their own geometry for their color experiments and
layered their colors differently. Note that the central
circles in Julia’s image are both the same color.

One of Sharon’s friends was interested in the
work of Salvador Dali, so she decided to incorporate
his work into her project. We did not work with re-
alism of any kind in the course, so Sharon decided
to focus on an aspect of Dali’s work she could easily
work with: color.

She looked for pieces which had backgrounds
which were basically two-colored. Then, she worked
at recreating the color pattern by combining two color
gradients, one on top of the other (see Figure 9).

Matsko

266



Figure 8 : Josef Albers: Andrew’s Final Project (left) and Julia’s Final Project (right).

Figure 9 : Sharon’s Final Project.

Ella was interested in L-systems,
and so I wrote some routines for her to
use in her Final Project (and which I will
also use when I now teach L-systems in
the course). She was able to create some
interesting effects by just slightly alter-
ing the parameters to L-systems which
created trees and superimposing the new
L-systems on top of the original. This
gave some depth to the trees in her forest.
A still from one of her movies is shown
in Figure 10.

Students also wrote a final response
paper about how they felt the course
went, and how their attitudes about
mathematics, art, and computer science changed over the course of the semester. I will let the quotes speak
for themselves.

Figure 10 : Ella’s Final Project.

“After this course, I definitely think about
math differently, because now I know how it
can be used to figure out shapes and layers and
colors that I can use in my art. I also think dif-
ferently about art, because before this course, I
had only really done traditional art, and had no
idea about any digital art besides using a tablet
to draw with instead of a pencil. This course
has really opened my mind to what I think art
can be, and definitely how it can be created in
different ways.”

“Best of all, this class is part of the reason
why I decided to declare a minor in computer
science. It is something I have been considering
as I have always had an interest in the subject,
but I feel this class had really helped fuel that
interest and give me the final nudge I needed.”

A Mathematics and Digital Art Course

267



Other Course Features

There were two additional features of the course which need to be mentioned. First, in addition to the
presentation for their Final Project, students also gave two presentations on papers from The Bridges Archive
[2]. This is a repository of papers presented at Bridges conferences since 1998. Students could choose a six-
or eight-page paper on a topic of their choice; it did not have to relate directly to the course. This turned
out to be a successful assignment – in their written comments, a few students singled these weeks out as
particular favorites. These presentations took place in the sixth and twelfth weeks of the course.

Because of its place in the First-Year Seminar program, Mathematics and Digital Art came with a small
budget. As a result, I was able to invite three local mathematical artists to speak: Chamberlain Fong, Carlo
Sequin, and Shirley Yap. They spoke on very different topics, and were popular with the students.

Implementing a Similar Course

Finally, I would like to remark that I have tried to make the course website [5] as complete as possible so
others interested in teaching such a course might do so without needing to start from scratch. And certainly
my selection of topics and assignments reflects my own personal interests.

I do not use a text for the course, but rather have written several blog posts with material relevant to
the course. For ease of reference, I will list those posts here. For a post on Josef Albers, see Day002 [4];
for L-systems, see Day007–009; for textures and color gradients, see Day011–012; for iterated function
systems, see Day034–036; for tutorials on Processing, see Day 039–044; and for a guided tour through the
Fall 2016 semester as it was happening (including more examples of student work), see Day057, Day059,
Day061, Day063, Day066, Day069, Day071, and Day072. (To see Day039, for example, go to the url
cre8math.com/tag/Day039.)

Acknowledgments

I would like to thank all my students from my Fall 2016 Mathematics and Digital Art class! They were an
inspiration, and generously granted me permission to use their work in this paper. Also, I would especially
like to acknowledge my course assistant, Nick Mendler, who contributed so much to the success of the
course.

References

[1] Albers, Josef, Interaction of Color, Yale University Press, New Haven, 2006.
[2] Bridges Organization, The, The Bridges Archive, http://archive.bridgesmathart.org (as of

Jan. 26, 2017).
[3] Lindenmayer, A., and Prusinkiewicz, P., The Algorithmic Beauty of Plants, Springer-Verlag, New York,

1990.
[4] Matsko, Vincent J., Creativity and Mathematics. http://www.cre8math.com (as of Jan. 26, 2017).
[5] Matsko, Vincent J., Mathematics and Digital Art, Fall 2016. http://vincematsko.com/

Fall2016/MAT195/2016F_DigArt.html (as of Jan. 26, 2017).
[6] SageMathCloud. https://cloud.sagemath.com/settings (as of Jan. 26, 2017).
[7] Wikipedia: The Free Encyclopedia, L-system. https://en.wikipedia.org/wiki/L-system (as of

Jan. 26, 2017).

Matsko

268

http://archive.bridgesmathart.org
http://www.cre8math.com
http://vincematsko.com/Fall2016/MAT195/2016F_DigArt.html
http://vincematsko.com/Fall2016/MAT195/2016F_DigArt.html
https://cloud.sagemath.com/settings
https://en.wikipedia.org/wiki/L-system

