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Abstract 
 

We are interested in the sculptural possibilities of closed chains of modular units. One such system is embodied in 
MathMaker, a set of wooden pieces that can be connected end-to-end to create a fascinating variety of forms. 
MathMaker is based on a cubic honeycomb. We explore the possibilities of similar systems based on octahedral-
tetrahedral, rhombic dodecahedral, and truncated octahedral honeycombs.  

 
 

Introduction 
 

The MathMaker construction kit consists of wooden parallelepipeds that can be connected end-to-end to 
make a great variety of sculptural forms [1]. Figure 1 shows on the left an untitled sculpture by Koos 
Verhoeff based on that system of modular units [2]. 

 MathMaker derives from a cubic honeycomb. Each unit connects the center of one cubic face to the 
center of an adjacent face (Figure 1, center). Units connect via square planar faces which echo the square 
faces of cubes in the honeycomb. The square connecting faces can be matched in 4 ways via 90° rotation, 
so from any position each adjacent cubic face is accessible. A chain of MathMaker units jumps from cube 
to adjacent cube, adjacent units never traversing the same cube.  

 A variant of MathMaker called “turned cross mitre” has units whose square cross-sections are 
rotated 45° about their central axes relative to the standard MathMaker units (Figure 1, right). Although 
the underlying cubic honeycomb structure is the same, the change in unit yields structures with strikingly 
different visual impressions. In general, various aspects of the geometry of a structure can be emphasized 
or deemphasized by judicious choice of unit. 
 

 
 

Figure 1: Sculpture by Koos Verhoeff; MathMaker units in a cubic honeycomb; 
MathMaker turned cross mitre units in a cubic honeycomb. 
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 We are interested in analogous systems of modular units that offer similarly interesting sculptural 
possibilities. Any polyhedral honeycomb can serve as the underlying structure of such a system, with 
various choices of units giving various sculptural possibilities. We present the results of our investigations 
of structural systems based on octahedral-tetrahedral, rhombic dodecahedral, and truncated octahedral 
honeycombs. 

 To discover new sculptural systems, we begin by describing the adjacent face relationships of a 
honeycomb as “moves”—geometric transformations that abstract the connecting face relationships in a 
unit from the particular geometries of the unit. Using a Wolfram Language package, we enumerate closed 
chains of moves. We arbitrarily choose to enumerate chains which, like the Verhoeff sculpture, have 
twofold or greater rotational symmetry. By focusing on symmetric chains, we more efficiently generate 
visually interesting structures. Then we interactively explore realizations of the enumerated chains with 
units whose connecting faces are scaled and rotated regular polygons derived from the faces of the 
polyhedra in the honeycomb. The Wolfram Language package code and rotations of figures in this paper 
can be found at https://wolfr.am/ljb6fFln. 
 
 

Octahedral-Tetrahedral Honeycomb 
 
The octahedral-tetrahedral honeycomb has two species of polyhedron, hence there are two modular units 
in a structural system based on it, one that traverses octahedra and one that traverses tetrahedra. Two 
basic units are shown on the left side of Figure 2; these are simply the convex hulls of pairs of adjacent 
faces of the polyhedron. The octahedral unit is ¼ of an octahedron, and the tetrahedral unit is an entire 
tetrahedron. 

 Alternative units are obtained by taking the convex hulls of the face vertices scaled by s and rotated 
by r about their centers. If we denote such units by (s, r), the units on the left of Figure 2 are (1, 0) units. 
Further units (1/√3, π/6) and (1/2, π/3) are shown in the center and on the right. We found these three sets 
of units by interactively manipulating the scaling and rotation of units in various structures while keeping 
an eye out for coincident vertices, parallel edges, coplanar faces, symmetric structures and overall visual 
impression.  

 

 
 

Figure 2: Octahedral-tetrahedral honeycomb units: (1, 0) (left), 
(1/√3, π/6) (center), and (1/2, π/3) (right) 
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Figure 3: Octahedral-tetrahedral structures: (1, 0) units, (1/√3, π/6) units, and (1/2, π/3) units 
 
 (1, 0) units give dense, crystal-like structures (Figure 3, left). The same structure is shown in the 
center of Figure 3 constructed from (1/√3, π/6) units, which give an asymmetric cross-section and where 
coplanar faces of adjacent units often merge into larger faces. On the right is the same structure again, this 
time constructed from (1/2, π/3) units. This structure is reminiscent of Verhoeff’s sculpture shown in 
Figure 1, but cross sections are triangular rather than square, and successive units are related by 120° 
rather than 90° rotations. 
 
 

Rhombic Dodecahedral Honeycomb 
 
Units that derive from a rhombic dodecahedral honeycomb are asymmetric and can be attached at either 
end to give left-bending or right-bending paths (Figure 4, left). The asymmetry arises because adjacent 
faces are not mirror symmetric about the perpendicular plane through the midpoint of their common edge. 
A natural alternative to the straight, convex hull units is the solid of revolution obtained by rotating one 
connecting face to the other about the edge shared by the corresponding faces of the rhombic 
dodecahedron (Figure 4, center). Figure 4 shows on the right a structure built from 18 such (.385, π/2) arc 
units, the scale factor chosen so that edges of the structure just graze each other. The π/2 rotation gives a 
unit with an asymmetric cross section and two planar faces, which makes for simple, bold structures.  
 

  

 
 

Figure 4: Rhombic dodecahedral honeycomb (1/2, 0) unit; rhombic dodecahedral honeycomb  
(.385, π/2) arc unit; structure constructed from eighteen (.385, π/2) arc  units 
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Figure 5: Truncated octahedral honeycomb (√3/2, π/6) unit; structure constructed from  
sixteen (√3/2, π/6) units; end-on view of the same structure showing its square envelope. 

 
 

Truncated Octahedral Honeycomb 
 
In a honeycomb of truncated octahedra, we traverse from hexagonal face to adjacent hexagonal face. We 
have chosen to make connecting faces triangles rather than hexagons, skipping every other vertex, since 
each hexagonal face has only three adjacent hexagonal faces. Due to the orientations of those faces in 
adjacent polyhedra, taking the convex hull of the connecting faces of units necessarily yields an irregular 
antiprism rather than a prism (Figure 5, left). The abundant facets of such a unit give visually complex 
structures that at higher unit counts are overwhelmingly busy. At lower unit counts, structures can be 
visually compelling, with interesting geometric relationships in the apparent disorder. The structure 
shown in Figure 5, center, is constructed from sixteen (√3/2, π/6) units. The end-on view on the right of 
Figure 5 reveals order in the apparent chaos: at π/6 rotation, the units neatly fit within a square envelope. 
 
 

Conclusion 
 
Our method of discovery has led us to several sets of modular units from which a large variety of 
interesting structures can be built. The combination of enumeration with interactive exploration has 
allowed us to efficiently explore how a given unit geometry behaves as a sculptural system, and 
conversely, how a given structure is articulated by various choices of unit. Our results hint that there are 
likely additional compelling modular sculpture systems to be discovered in the many honeycombs that we 
have not yet explored. 
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