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Abstract 
 

We present the design of a uniquely constructed reversible “infinity scarf”—a specially made cloth torus such that 
its shape is invariant under inversion and it folds flat into a six-layer equilateral triangle. Since the meridians and 
longitudes of a torus swap places under inversion, one might think the shape invariance property dictates 
construction from a square piece of fabric (with opposite edges sewn together). However, although inversion 
invariance can be achieved with a square construction, the perfect equilateral triangle folding cannot. The triangle 
folding is a special case of what we refer to as “ribbon folding” and we show that our scarf and one made from a 
square are the only toroidal forms made from flexible but inextensible fabric that are invariant under inversion and 
fold in a planar ribbon loop. We present several fabric layouts that can be used to produce the scarf, along with 
sewing instructions, and show that, among all such layouts, the seam length of the hexagon is the shortest possible.  

 
 

Introduction 
 
For artists, craftsmen, and designers, fun mathematical puzzles abound. Here’s one in the realm of fashion 
design.  

 Suppose you want to create a reversible “infinity scarf”—a traveler’s ideal, versatile item of 
clothing—two outfits in one. For mathematicians among you who don’t know what an infinity scarf is, 
the classic design is a cloth torus whose hole is large enough to fit over the head so that it can be looped 
around the neck one or more times. For fashion enthusiasts among you who don’t know what a torus is, 
it’s basically a donut shape—and if you don’t immediately see a relationship between a donut and your 
favorite infinity scarf, imagine stuffing it like a pillow (and perhaps shrinking it a bit) and you should get 
the idea. Having never before encountered a truly reversible infinity scarf1, we wondered why not. Is it 
possible to design and create one that is an attractive, functional garment?  
 
 

Constructing a Torus from Fabric and the Inversion Problem 
 
The mathematical notion of a torus as a stretchy, shrinkable square, whose opposite edges are understood 
to be glued together (Figure 1) suggests a possible sewing construction for an infinity scarf: a square 
piece of fabric whose opposite edges are stitched together. Because real fabric, even very stretchy real 
fabric, doesn’t have the unlimited stretchiness and shrinkability presumed by topologists, a practical 
seamstress might think to start with a long, thin rectangle instead of a square, a tactic that essentially 

                                                        
1 Our Internet searches on “reversible infinity scarves” produced many results, but all turned out to be two-sided bands whose 
different sides were both potentially visible when worn. Our definition of a “reversible infinity scarf” is different, and is limited 
to cloth tori with an interior surface that is different from the exterior surface and that can be seen only when the torus is inverted, 
i.e., turned inside out. 
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provides a little advance stretching in one direction, in order to construct a scarf that has an appropriate 
geometry and shape for a typical infinity scarf. An inspection of commercially made toroidal infinity 
scarves reveals that they are generally made using this exact construction. 
 

[5] 

Figure 1: A topological torus: a stretchy shrinkable square whose opposite edges are understood to be 
connected. 

Although it may not be intuitively obvious, a savvy seamstress will know that, just like a pillow 
cover, a toroidal cloth form can be inverted2 (i.e., turned inside out) through a small hole in the fabric or 
along a seam. And, if the torus is made from very thin, silky fabric, this inversion hole can be quite small. 
However, a difficulty arises with a scarf sewn from a rectangle when the scarf is inverted because the 
meridians and longitudes of a torus swap places under inversion.3 Figure 2 illustrates this surprising (at 
least to non-topologists) phenomenon. Due to the swap, a toroidal scarf constructed from a long, skinny 
rectangle will dramatically change geometry and shape when inverted. Depending on the dimensions of 
the rectangle, the inverted scarf may no longer even be wearable. Seamstresses, who typically sew an 
object inside out and then invert it to hide the seams on the interior, must account for this in their 
construction methods [3]. Since our fashion design goal is to create a reversible scarf that is identical in 
shape and size when turned inside out, this seems like a potentially serious design obstacle! Our plan is to 
sew it with reversible fabric and we want the only change on inversion to be the change in visible surface 
pattern. Does this mean a square construction is our only option for achieving this? We’ll return to this 
question in a moment, but first let’s consider another important design specification. 

 

 
Figure 2: Stages of a punctured, stretchy, shrinkable torus being turned inside out. These are still images 
from an online animated gif by Surot [2] showing how the meridians (circles going through the torus’ 
hole) become longitudes (circles going around the torus’ hole) on inversion, and vice versa. 
 

Further Complications: The Möbius Twist 
 
In order to facilitate a flatter (and more flattering) drape on the human figure, infinity scarves are often 
constructed with a Möbius half twist. We can create a Möbius-like toroidal scarf from a rectangle by 
sewing together the two long edges first, and then giving the resulting cylinder a half twist before sewing 
together the short edges (the cylinder ends). This process will produce a scarf that looks something like 
the leftmost drawing in Figure 3. If the larger dimension of the rectangle is long enough, the resulting 
scarf will loop around the neck one or more times, and the Möbius shape creates a more functional and 
aesthetically pleasing garment. 
                                                        
2 For the purposes of this write-up, “invert” implies the same transformation as “evert” in the topological literature.  
3 See this presented as a puzzle in The New York Times Numberplay blog [3]. We encourage readers who want to gain tactile 
intuition for this strange phenomenon to try a quick experiment with sewn cloth, or cut paper and tape. With cloth, sew together 
the opposite edges of the rectangle, leave a small hole in one seam, and try out the inversion. With paper and tape, make two 
identical rectangles and check out the difference depending on which set of opposing edges you join first (the join order 
determines which edge becomes a meridian circle and which a longitude circle of the torus). 
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Figure 3: Infinity scarves are often constructed with a Möbius half-twist to facilitate a nice drape on a 
human figure. If we preserve the triangular folding of the Möbius twist while gradually increasing only 
the scarf width (i.e., the shorter dimension of the original rectangle), the process reaches a limit when the 
scarf becomes a six-layer equilateral triangle (right). What shape/dimensions is the resulting layout now?  

Unfortunately, due to the swapping of meridians and longitudes, the inverted version of the leftmost 
scarf depicted in Figure 3, although still toroidal, winds up looking more like a windsock than a scarf—
neckwear perhaps suitable for a giraffe, but not particularly appropriate for a human being.  

The left to right image progression in Figure 3 illustrates what happens if we explore counteracting 
this problem on a toroidal Möbius scarf by gradually increasing the shorter dimension of the original 
rectangle, while keeping the longer dimension unchanged. This progression need not end at the form with 
a hexagonal perimeter (shown fourth from left), where the visible triangular hole in the center shrinks to a 
point. It can continue until the scarf becomes a six-layer deep equilateral triangle (shown at far right). 
What is the rectangular layout of the resulting object now? Have we arrived at a square?  

Interestingly, the answer is no—we’ve actually gone beyond it4—and the object we’ve produced has 
the curious property of being shape-invariant on inversion without having a square layout. Furthermore, it 
preserves some excellent properties from a fashion perspective—namely, it still fits over the head (the 
size of the hole, although hidden in the folds, is unchanged5) and it retains its nice Möbius drape. In fact, 
as we shall see in the next section, other than a square-based design, it’s the only “ribbon-foldable” 
toroidal scarf that is shape-invariant on inversion. We can also create paper and cloth models that permit 
tactile exploration of our curious new object, allowing us to gain a great deal of intuition about it while 
verifying some of the scarf’s interesting properties. 
 
 

Ribbon-Foldable Tori and Their Inversions 
 
It is advantageous for a scarf to be able to be folded neatly onto a plane: for the neat-freak, this makes it 
easier to store, but more importantly, it enhances the attractiveness of how it drapes on the body. One 
might devise complicated, origami-like, folding patterns, but we will limit our consideration to a simpler 
approach that we call ribbon folding. We assume that the toroidal scarf is constructed starting with a 
cylindrical tube, such as the middle image in Figure 1, which is then closed up by bringing the two open 
ends together. Clearly the tube can be collapsed onto a plane to take a rectangular shape two layers deep. 
One may then make a series of straight folds, each spanning from one long edge to the other, until the 
open ends are brought into alignment. Figure 4 shows a cylindrical tube being collapsed to a rectangle and 
then folded once. Figure 5 shows several possibilities for folding the rectangle into a closed loop. The 
long edges of the rectangle may be considered as the two edges of a ribbon, and we are considering ways 
of folding this ribbon onto a plane until its ends meet, forming a planar ribbon loop. (There exists a 
literature on closed ribbons: for example, see Dennis and Hannay [4].) We define a ribbon-foldable torus 
as any (inextensible, infinitely flexible) cloth torus that can be manipulated into such a double-layer 
planar ribbon loop. 

                                                        
4 The original width has now become slightly longer than the original height. 
5 In Figure 3, the rectangle length is held constant while the width changes, so the size of the head opening is held constant. 
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Planar ribbon loops can be categorized as even or odd according to the number of folds. When 
closing up an even loop, each edge of the unclosed rectangle mates back to itself, resulting in a two-sided 
ribbon. In Figure 4, this means point A mates to B, and D to C, so each of 𝐴𝐵 and 𝐶𝐷 closes up into its 
own loop. For an odd ribbon loop, each edge mates to the other, i.e., point A to C and point D to B, 
thereby forming a Möbius strip with only one closed edge, 𝐴𝐵𝐷𝐶𝐴. In Figure 5, we have labeled each 
fold as contributing either +1/2 or −1/2 twist to the ribbon loop.  

To better understand a ribbon-folded torus, we reverse the construction procedure described above:  
cut across the torus to get a cylinder of cloth as in the top image of Figure 4, cut along longitudinal line 
AB, and unroll the cloth into a rectangle. We then place that rectangle in the plane with AB vertical, as in 
Figure 6. Line DC is parallel to AB and bisects the rectangle. To convey how the edges match up when 
the torus is sewn closed, we may tile the plane with copies of the basic rectangle. Repeating the rectangle 
horizontally shows how the edges meet when we wrap the cloth into a cylinder. Similarly, when adding a 
second row of rectangles above the initial row, we align them according to how the ends are sewn 
together; that is, we need to place the next copy of A on top of the point along line BCB to which it is 
sewn when closing up the torus. When we limit ourselves to tori closed up by ribbon-folding the flattened 
cylinder, point A must match either to point B (for even loops) or point C (for odd loops), resulting in the 
two different grids shown in Figure 6, which we will refer to as even and odd tilings, respectively.  

The tilings help us see what happens when the torus is inverted.  First, we need to indicate on the 
diagram the meridians and longitudes.  These are closed loops of minimal length going once around the 
torus, either around its “tunnel” for a meridian or its “hole” for a longitude.  Minimal length curves are 
straight lines in the tiling diagram. For both even and odd tilings, meridians run horizontally. For even 
tilings, longitudes run vertically, and thus the meridians and longitudes run parallel to the sides of the 
basic rectangle.  In contrast, the longitudes for odd tilings run on a slant, advancing one half-width of the 
basic rectangle while advancing one unit in height. Drawing one meridian and one longitude (and their 
repetitions) in the tiling produces the parallelograms overlaid on the odd tiling in Figure 6. 

Inverting the torus does not change the basic geometry of its plane tiling, but the lines must be 
reinterpreted.  Meridians become longitudes and vice versa.  For the even tiling, little appears to change: 
we just rotate the diagram 90º.  This reflects the fact that every cloth torus ribbon-folded with zero twist 
still ribbon folds after inversion, although, unless the tile is square, the result has different dimensions. 

The situation is quite different for odd tilings. If the inversion is ribbon foldable, then we must be 
able to overlay a new odd tiling that uses the former longitudes as the new meridians.  The upper-left 
image in Figure 7 shows what typically happens when the torus for an odd ribbon loop is inverted: the 
new basic rectangle A’B’EF built on new meridian A’F fails to match the geometry of the torus, because 
C’ does not coincide with C. This means that the inversion is not odd-ribbon-foldable. (Not even-ribbon-
foldable either, for that matter.) 

However, all is not lost.  One can determine what proportions of the parallelogram produces odd 
tilings in both inversions.  Rather than answer that question here (the reader may wish to ponder it), we 
restrict our attention to tori that are shape invariant under inversion.  Such a torus must have meridians 
and longitudes of equal length, i.e., the basic parallelogram must be a rhombus.  One may confirm that 
only the 60º rhombus in the upper-right image of Figure 7 produces an odd tiling in both directions.  For 
clearer viewing, the bottom image repeats the pattern to show three tiles in each direction.  

So far, we have shown that the 60º rhombus gives the only odd tiling that can possibly self-invert. It 
is beyond our scope here to rigorously prove that this necessary condition is also sufficient, but at any 
rate, it is more satisfying to actually construct the torus and physically confirm this fact.  And what scarf 
results from this? As we will show shortly, the rightmost image in Figure 3 is the result of ribbon folding 
the 60º design using a +1/2-twist. The twist is not clear in that image, but it becomes clear by observing 
that twist is preserved as we progress left to right across the sequence in that figure. It is less obvious 
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what will happen to the twist upon inversion, but it turns out that the inversion also has a +1/2 twist (it 
does not flip to −1/2) so the torus is perfectly invariant under inversion. 

In summary, we have established that there are just two ribbon-foldable torus designs that are shape 
invariant under inversion: the square design for even loops and the 60º rhombus for Möbius-twisted 
loops. Next, we demonstrate our claim that the rightmost image in Figure 3 corresponds exactly to the 60º 
design. 

  
Figure 4: Circular cloth cylinder collapsed to a 
planar rectangle, then folded once. 

  
Figure 5: Even and odd planar ribbon loops, with 
twist indicated. 

 

        
Figure 6: Tilings compatible with even and odd 
planar ribbon loops. 

 

          

  

Figure 7: A general odd ribbon loop does not 
invert to an odd ribbon loop.  Only a design based 
on equilateral triangles inverts to the exact same 
odd ribbon loop. 
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Layout Options 

 
To visualize the rectangular layout needed to create the six-layer triangular scarf shown at the far right of 
Figure 3, we can deconstruct it with a thought experiment as described in Figure 8. Reversing the steps 
shown there, folding and sewing instead of unfolding and cutting, provides sewing instructions to produce 
the scarf from the layout. Inspecting the dotted fold lines of the resulting rectangular layout (Figure 8 
right), we can now clearly see all six equilateral triangles, although two are sliced in half by a seam along 

a perpendicular. The rectangle’s aspect ratio of *
+

 is clear from the equilateral triangle.  
  

 
Figure 8: Thought experiment to deconstruct the Möbius-folded six-layer equilateral triangle on the far 
right of Figure 3 (steps shown left to right): 1. Cut two layers deep along the dotted meridian line and 
unfold the two resulting triangular flaps. 2. Unfold the trapezoidal flap. 3. Cut the resulting cylinder open 
along the top edge, and unfold it open. 

 With a little experimentation moving the seam lines around while retaining the same area, we can 
confirm that a hexagon and a 60° rhombus, as shown in Figure 9, are also valid layouts. The edge labels 
in Figure 9 indicate how edges connect when sewn. The largest (black) dashed lines represent a set of 
meridian and longitude lines on the resulting torus, running 60° apart. The remaining dashed lines are 
fold markings that can be used to produce paper models of the six-layer equilateral triangle by folding 
first red (small dash), then green (medium dash), and finally blue (larger dash). If enlarged and printed on 
white paper, each layout can be folded into a paper model with either the colored or white surface 
showing, demonstrating the inversion invariance. In general, the sewing instructions involve simply 
sewing together the opposite edges in any order—except for the rectangle, where the matching labels on 
its long edges are not directly opposite one another. Sewing together the rectangle’s short edges first and 
giving the resulting cylinder a half twist before sewing together the long edges, produces the correct 
alignment. 

 
Figure 9: Three possible sewing layouts and/or paper models. (Note: for sewing, add seam allowances.)  
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Seam Length 
 
An interesting distinction between the layouts in Figure 9 is that they have different total seam lengths, 
with the hexagon notably shortest. The seam length is half the layout’s total edge length. Using an 
equilateral triangle side of 1, the total edge lengths are: Hexagon = 6; Rectangle =	3 + 2 3 ≈	6.5; 
Rhombus =	4 3 ≈ 6.9. But is there anything shorter than the hexagon among all possible layouts?  

The “Honeycomb Conjecture,” proven in 1999 by Hale, states that “any partition of the plane into 
regions of equal area has perimeter at least that of the regular hexagonal honeycomb tiling.”[1]. Since any 
valid scarf layout tiles the plane with tiles of equal area (Figure 10), there is no layout with a seam length 
shorter than the hexagon. For this reason, we consider a hexagon the quintessential layout for our scarf.  

 

 
Figure 10: Any valid scarf layout has area equal to six equilateral triangles and will tile the plane with 
tiles adjoined at the sewing seams. 

Fabric Design and Sewing Notes 
 
The specialness of the honeycomb tiling, and its relationship to our scarf geometry, suggests another 
possible design element. Fabric printed with a P6 symmetry pattern [5] nicely echoes the hexagonal 
structure of the scarf and, if printed at a suitable scale, also facilitates exact matching of the pattern at the 
seams, regardless of the layout used. Two apps, iOrnament (pixel-based) and Kaleidopaint (spline-based), 
enable easy creation of wallpaper group patterns, and both output a tile image that can be input directly to 
fabric printing venues like Spoonflower. Spoonflower will not print reversible fabric, but it’s possible to 
create your own using two fabric layers attached back to back. Figure 11 shows a rendition of the scarf 
with P6M patterned fabric made this way. (Mathematically OCD designers will be dismayed to learn that 
Spoonflower’s printing process can shrink the fabric inconsistently along the warp vs. the weft, slightly—
but manageably—throwing off the precise P6 symmetry. This is more noticeable on silk than on polyester 
crepe de chine.) 

From a sewing perspective, seam length is not the only thing we might want to optimize. Ease of 
construction is also an issue, and our experience is that seams intersecting at right angles are easier to 
sew, which may make the rectangular layout preferable. It is also usually the layout with the least trim 
waste. On the other hand, in addition to the benefit of shorter seams, one might argue that the hexagon 
better elucidates the scarf’s mathematical structure and that its seams add a further decorative and more 
mathematically meaningful element to the design.  

Another potential sewing design consideration is placement of the layout with respect to the fabric 
warp. Clothing designers will sometimes cut fabric “on the bias” in order to line up a seam at a 45 degree 
angle from the warp and weft, which improves drape and stretch along that dimension of the garment. 
Such details are the purview of sophisticated clothing designers, who may wish to align the scarf’s 
toroidal axes so they are both at the same 30° angle from the fabric warp—to subtly enhance the wearer’s 
sense of inversion invariance by giving the scarf neck hole the exact same degree of stretch on both sides.  
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Figure 11: A rendition of the scarf, Ellie Baker’s “Invertible Infinity,” shown at the Joint Mathematics 
Meetings 2017 exhibit of mathematical art. The “filmstrip” at the bottom shows the inversion progressing 
from one equilateral triangle folding to the other. The equilateral triangle side length of this scarf is 
about 21 inches.  It was constructed using French seams. 

Conclusion 
 
In addition to being a functional and fashionable garment, the scarf is itself a puzzle. One puzzle a wearer 
might want to solve first is figuring out how to fold it into the six-layer equilateral triangle. Doing so after 
inverting—and prior to donning—is useful because it helps “find” the nice Möbius drape. It’s also a 
convenient way to store or pack it. Here are a few other scarf-related conundrums a wearer might enjoy 
pondering: With its one-half ribbon twist, the hexagonal scarf is invariant under inversion—would it also 
be inversion invariant if constructed to have a 3/2 ribbon twist? How about a square scarf with one full 
ribbon twist? Ribbon folding is only compatible with integer half-twists—is there some more general 
planar folding scheme that allows other twist values?   

Our scarf, with its novel design, dimensions, and structure, has the confluence of features needed in a 
reversible infinity. It is the only Möbius ribbon-foldable toroidal scarf that is shape-invariant under 
inversion. Its property of inverting to exactly the same dimensions is not just a nice math result, but 
makes the scarf doubly useful in a fun convergence of the theoretical and the practical. 
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