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Abstract 

The catenary is a beautiful curve, with important applications in science, engineering, and architecture.  In our
hands-on workshops, participants build catenary arches while discovering something about their mathematical
properties and the design choices that led to this construction.  Three materials are explored: paper, cardboard,
and wood.  The large wooden arch is designed to be displayed in public spaces and to make viewers aware of the
link between art and math. As part of our Making Math Visible project, free templates and three-part lesson plans
are available online.

Introduction

In our ongoing pursuit to find beautiful ways to make math visible, [1] we were inspired during a visit to
St. Louis, to create our own artistic rendition of the engaging catenary form.  Eero Saarinen's majestic
arch seemed like a natural gateway for inviting viewers to think about math, to ask questions, and to
ignite mathematical discussion.  Figure 1 shows the result of our project, a wooden walk-through catenary
arch that anyone can replicate by using the instructions and laser-cutting templates we have created. [2]

   

Figure 1:  Catenary arch of laser-cut wood (stained) and cable ties, 6.5 feet tall.
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   The St. Louis Gateway Arch is a giant mathematical drawing in the sky.  Every day,  thousands of
visitors are attracted by its beauty, compelled to step inside and to physically follow its arc upwards.  The
inviting form of the catenary has fascinated humans for centuries, going back to Galileo who famously
puzzled over its mathematical properties.  After the invention of calculus, both the upward orientation of
a catenary arch and the hanging form of a chain could be precisely understood.  The suspended version of
a catenary can be found all  around us,  from the delicate threads of a spider web, to the ubiquity of
telephone wires, to the rusted anchor chain of a battleship.   In contrast, true catenary arches are relatively
rare; before Eero Saarinen's monumental St. Louis example, they mainly occurred when stone masons or
architects such as the visionary Antonio Gaudi, consciously upended the familiar hanging shape. [3, 4, 5]

    We conceived of various ways that we could add an artistic body to the underlying mathematical
bones of the curve.  The pure catenary is just a line of zero thickness, but we needed to flesh out its
substance so it could stand up and have the presence and physicality of a sculptural object.  The first step
was to design software that allowed us to manipulate many parameters and make artistic decisions as we
viewed various hypothetical  renditions  on the screen.   This led us  to produce templates  for a paper
version that can be assembled as a real concrete object.  From there, it was a natural step to scale it up to a
larger cardboard arch, which convinced us of the worth of our artistic choices.  We then created a full size
wooden sculpture large enough to walk through.  It stands on its own as an artistic manifestation of the
mathematical concept.

    One aspect which makes the catenary arch so captivating is that it has deep mathematical as well as
artistic beauty.  It can be enjoyed for its elegant clean lines and aesthetic minimalism or for its fascinating
role in mathematical physics. A hands-on model can serve as a wonderful educational tool to demonstrate
that the catenary is the optimal shape for an arch that carries its own weight.  It has been used as an
exhibit in many science museums, where visitors can build an arch with self-supporting blocks.  When
constructing  it,  the  builder  discovers  that  the  weight  of  the  arch  is  directed  along its  length,  so  no
sideways force exists to slide the blocks apart where they rest on each other.  This requires a beautiful
curve, similar to a parabola, yet subtly different.  Educators will find this to be a natural opportunity to
explain that a parabola is a quadratic polynomial, while the catenary is in the exponential curve family.
Fully understanding why the catenary is the shape of a hanging chain and has the optimal properties it
does requires drawing a force diagram then applying a bit of calculus, something that is generally omitted
in  science  museum  exhibits.   A  complete  derivation  can  be  found  in  university-level  math  and
engineering textbooks or conveniently online at Wikipedia. [5]

    The educational possibilities presented by the catenary arch naturally led us to incorporate it into our
Making Math Visible project.  Its mathematical depth lends itself well to hands-on activities that illustrate
the intersection of math and art.  Our templates and lesson plans are freely available online [2] and we
welcome people to recreate them in classrooms, schools, and public spaces.  Educators will find that they
have many entry points, which allows them to adapt the activities to the level of the participants.  We use
a three-part lesson model to first activate students' thinking in a “minds-on” exercise, followed by the
main  construction activity,  and concluding with a  consolidation to ensure mathematical  concepts  are
clearly understood and retained. 

Design and Customization

Customizing  the  catenary is  a  good exercise  in  3D design iteration.   We wrote  a  small  program in
Mathematica [6] to render many variations for the skin of the arch, allowing us to explore a sizable design
space while thinking about aesthetics, strength, complexity, size, ease of assembly, and the constraint that
the largest piece must not be too large to fit on our laser-cutter.  In the end, after all the parameters were
tweaked to our liking, the program output the face templates in a format we could adapt for laser-cutting. 

    Figure 2a shows a rendering of a possible design of a thirteen-section arch in which the tube has a
constant square cross section.  It is surprisingly ugly and blocky, in part because it does not taper down to
a thinner cross section at the top.  Saarinen's design, Figure 3, is elegantly tapered, making it feel solidly
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anchored to the earth while gracefully reaching for the sky.  Figure 2b shows the improvement afforded
by a taper, while experimenting briefly with a pentagonal cross section instead of a square.  In addition,
diamond-shaped openings are introduced.

Figure 2:  Four  possible realizations of a catenary arch: (a) square in cross-section, un-tapered,
with  no  openings;  (b)  pentagonal  with  diamond  openings;  (c)  triangular  with  rectangular
openings and 18 segments; (d) triangular, pointing upward, with small elliptical openings. 

Some sort of openings are required when assembling the wood panels with cable ties, in order to access
the interior and to thread the ties through small holes.  However, the angularity of these diamond-shaped
holes  is  an  unfortunate  choice  that  conflicts  with  the  smoothness  of  the  curve.   In  Figure  2c,  the
pentagonal tube idea has been abandoned and simplified to an equilateral triangle, the diamond openings
are tamed a bit in becoming rectangular, and the number of segments has been increased to eighteen.
These openings are only a slight improvement over the diamonds and the many segments would require
significantly  more  building  time,  yet  do  not  add  much  to  the  smoothness  of  the  curve.   However,
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Saarinen's choice of a triangular cross section is clearly an aesthetically pleasing simplifying step.  In
Figure 2d, we experiment with the rotational “phase” of the cross section by briefly considering twisting
the triangle so there is a ridge line along the outside and peak of the arch.  This feels overly sharp and
knife-like, again confirming Saarinen's eye for design. We also experimented with elliptical portholes
minimally sufficient for accessing the interior, however their small size was awkward and distracted from
the overall design.  In the end, we simply had no choice but to copy the tapered, triangular cross section,
phased as in St. Louis.  We enlarged the elliptical windows, making them light and open to allow interior
access, while structurally reinforcing the corners as fillets.

    An interesting design question lies in the lengths of the individual segments.  As we were working with
flat pieces of plywood, the underlying smooth curve had to be approximated with discrete polygons. Even
after deciding on the number of sections, the question remained of precisely where the slices should be
made.  For visual reasons, the sections near the top, where the curvature is greater and the cross section is
thinner, had to be shorter, but how much shorter?  There are a number of ways one might try to approach
this rationally with a mathematical  principle of design.  Instead we cobbled together an interpolating
function that smoothly varied between a short-enough segment at the apex and one that just filled the 12-
by-24-inch bed of our laser cutter at the bottom.

    Another set of design issues concerns the triangular bracing pieces which serve as “floors” where the
thirteen  modules  join.   In  our  wood  catenary,  there  are  fourteen  of  these,  including  the  two  ends,
analogous to the fourteen fence-posts required to hold thirteen lengths of fence.  (In the paper and wood
versions, there are twenty-six triangles, as each end of each module is capped individually.)  They are
smaller near the top, in proportion to the taper.  Functionally, they serve to align the side panels and lock
everything rigidly. We believe they are necessary for strength, but haven't experimented with omitting
them.   Visually,  they  emphatically  demarcate  the  straight  sections,  making  explicit  the  discrete
approximation to the underlying curve. Each slice is orthogonal to the catenary, except the two extreme
cuts,  which are horizontal,  so the  arch can rest  stably on the floor.  As a  practical  matter,  the  wood
triangles are hollow, which allows them to be nested for laser-cutting and provides additional access to
the interior during the assembly.

Figure 3:  Gateway Arch in St. Louis
by Eero Saarinen, 630 feet tall.

Figure 4:  3D printed model of our final catenary design, 6
inches tall.
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    An additional engineering detail is that although the arch balances beautifully on its own, we designed
a simple base on which to attach the large wood version.  This provides stability and safety if people
bump into it.  The base is basically just a sheet of plywood with small holes for cable ties to loop through,
positioned to replace the two horizontal triangle brace pieces at the bottom of the arch.  It also serves to
fix the position of the two ends with the proper spacing.

   Finally, with the design programmed into Mathematica, it was relatively straightforward to also produce
an STL file suitable for 3D printing a miniature model of the design.  Figure 4 shows a six-inch tall
plastic version made on a Makerbot fused deposition machine.  The STL file can be downloaded and
replicated as an educational model. [7]

Paper Catenary

Heavy paper such as card stock is an inexpensive medium that is versatile, widely available, and easy to
work with.  Students of all ages can make surprisingly complex structures just using paper, scissors, glue,
and tape.   The first of the three versions presented here is a paper arch, 18 inches tall (48 cm), made of
thirteen modules.  Assembling the pieces and balancing them provides a fun dexterity challenge that can
be adapted to different skill levels.  Getting it to stand requires very precise fabrication and collaborative
construction with four  or  more  hands.   Given our  access  to  laser  cutters,  we were able  to  fabricate
precisely cut pieces with elliptical openings.  If working with scissors however, the openings could be
omitted.   Assembling  it  is  an exercise in teamwork and communication that  conveys  a  sense of  the
importance of careful engineering.  

    When we have tried this with student groups, we have observed their enormous satisfaction upon
completion.  Figure 5 shows the separate pieces under construction and Figure 6 shows the paper catenary
in its assembled form.  Note that the thirteen separate pieces are just resting on each other, held together
by their own weight, not glue or tape.  A light touch or breeze will cause the construction to collapse.
Participants typically require many attempts before they can get everything to balance just right, which
makes the moment of success all the more joyful.

Figure 5:  Paper catenary assembly. Figure 6:  Paper catenary assembled.
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    We developed a detailed three-part lesson plan that teachers can access and adapt to their student's
level.  It includes a complete materials list and the necessary templates.  The workshop can be presented
as a simple hands-on construction that merely familiarizes students with the notion of a catenary, or it can
be a much deeper foray into mathematics, for example, comparing the formula of a parabola with the
formula of a catenary and considering their asymptotic differences.  

Cardboard Catenary

In our experience developing hands-on activities, we have repeatedly observed that participants greatly
enjoy applying newly acquired knowledge to larger-scale challenges.  Building a scaled-up version of a
project like the paper catenary consolidates understanding and increases engagement.  So it was natural
for  us  to  design  a  human-size  arch,  which  led  us  to  choose  cardboard  as  the  appropriate  material.
Cardboard is a surprisingly strong, durable, and affordable medium.  We have found that if students have
already made  the paper version,  you  can simply hand them the cardboard pieces with some rolls  of
packing  tape  and  they  need  no  further  instruction.  It  is  a  natural  example  of  linear  scaling  and
proportional reasoning.  A single four-foot tall cardboard catenary suffices for a class-size group, because
the thirteen modules  can be built  in small  teams.   The result  is  a challenge that  can be delightfully
knocked down and rebuilt over and over again, much like a science museum exhibit.  Figure 7 shows that
the cardboard catenary can remain as a natural accoutrement in a classroom setting throughout the year.    

    Accurately cutting cardboard sheets into the required components is best done with a laser cutter.  We
realize that many educators do not yet have access to this technology, but we are optimistic that laser
cutters will become more and more available in the near future.  Meanwhile, the template can be traced
and cut with a knife.

Figure 7:  The cardboard catenary, 4.5 feet tall, fits well in a classroom environment.
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Wood Catenary

Wood offers more substance and permanence than mere paper or cardboard when making a work of art.
It provides strength and a surface texture that adds to the overall visual and tactile appeal.  Wood can be
beautifully stained, adding yet another dimension to the visual experience.  We chose to use laser-cut
Baltic birch plywood to construct a seven-foot tall catenary arch that is an homage to Saarinen's sculpture
in the sky.  Figure 8 gives a sense of its graceful presence in a natural setting.  Its fluid line seems to
effortlessly emerge from and re-enter the Earth, while the ellipsoidal openings are suggestive of  the chain
from which the catenary was originally conceived.

    While  based  on  the  same  underlying  design  as  the  paper  and cardboard  arches,  this  version  is
permanently held together.   We conceive of it more as an artwork to be exhibited in a gallery or sculpture
garden than as a puzzle to be repeatedly assembled.  The components are easily portable, so it can be
erected as a sort of pop-up math/art installation that gets people engaged in mathematical conversations.
During construction, its modules are joined with cable ties, but afterward the beauty of the underlying
math is intended to be appreciated visually,  rather than as an educational hands-on activity.   Figure 9
shows that it also makes a great entryway into a reading nook in a classroom.  

    In Figure 8 the arch is unstained, giving it a very natural look.  However, we have found that applying
water-based stain, as shown in Figures 1 and 9, adds a certain richness and visual impact. 

Figure 8:  Wooden catenary on the beach at sunset.  6.5 feet tall.
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Figure 9:  Wooden catenary as entrance to classroom reading nook.  6.5 feet tall.

Summary and Conclusions

We look at the world as artists, but always maintain our educational lens.  Catenaries and parabolas are
usually experienced as line drawings in the world of abstract mathematics.  Saarinen's genius lies in part
in creating a solid, tangible, imposing monument, yet keeping the quality and simplicity of a line.   Our
goal in this project was to keep some of that artistry while giving people a very personal and tactile
experience of  an abstract  mathematical  concept  on a manageable  scale.   A physical  catenary model
should expose the catenary's inherent beauty while preserving its minimalist essence.  

    Part of the power of mathematical art is how it can penetrate people's field of vision in a casual way
and implant mathematical ideas that they may otherwise never encounter.   If the catenary curve only
stayed on paper in textbooks, the general public would never have opportunity to experience it in any
way.  Artists like Gaudi and Sarrinen have delighted the public with these forms, however one has to
travel to particular sites to see their work.  By providing catenary-based experiences through smaller
sculptural forms, we hope to familiarize people with the idea that the beauty of math is all around them.
They will hopefully become sensitized to see how math, art, and engineering combine in the casual curve
of a spiderweb or the everyday dangle of a power cord.
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