
Visualizing Symmetry Subgroup Structures Using Simple Motifs
David A. Reimann

Department of Mathematics and Computer Science, Albion College, Albion, MI, USA;
dreimann@albion.edu

Abstract
Symmetric patterns can be understood mathematically as the resulting action of a symmetry group on a base motif. In
each symmetry group, all its elements can be represented by transformation matrices. Using the subgroup structure
of a base symmetry group, patterns can be created that have some integration into the overall symmetry. Examples
of this process are shown for two dihedral groups and a wallpaper group.

Introduction

Throughout history, symmetry has been used to create interesting patterns and objects. Many objects contain
patterns with symmetry groups of various types. For example, automobile wheels might have 5-fold, 6-fold,
7-fold, or higher symmetry in their main body. However, many have 5 lugnuts symmetrically placed at the
center. Thus the symmetry structure will match when the wheel symmetry is also a multiple of 5. Another
application area is in decorative dinnerware. Plates and bowls can be decorated with rings of different
symmetry types [2]. Similarly, decisions on the use of patterns fabric often depends on how the pattern
relates to the object being created (such as clothing and furniture). An artist often needs to choose which
symmetries to feature and which to minimize.

Mathematically, these patterns can be understood as the resulting actions by the elements of a symmetry
group on a base motif. A group is a set G together with an operation ? such with several special properties.
First, there exists an identity element e in G such that a ? e = e? a = a for all elements a in G. Second, for
every element a in G, there exsits an inverse element b in G such that a? b = b? a = e, where the element b
is often denoted a−1. Third, the operation? is associative, so that a? (b? c) = (a? b)? c for all elements a,
b, and c in G. Finally, the set G is closed under the operation ?, so that a? b is in G for all elements a and b
in G.

For a symmetry group, the elements can all be represented by 4×4 augmented (or affine) transformation
matrices as typically used in computer graphics [4]. For the patterns on the plane, the z component is simply
equal to zero. The group is a set of matrices defining each of the symmetry operations; the set may be
infinite, but can be restricted to a finite region in practice. The operation ? is matrix multiplication, which
represents ordered compositions of symmetry operations. Given a motif, the matrix elements of the group
are applied on the motif and the result of that action is noted. Applying every matrix element of the group
(every symmetry transformation) results in the full symmetric pattern.

However, it is often of interest to restrict the symmetries within the context of a larger symmetry group.
For example, a chess or checkerboard pattern with alternating colors results from restricting the symmetries
found in a quadrille pattern. A subgroup is a subset of the symmetry group that is a restriction that uses only
a portion of the symmetry group elements while maintaining closure under the base group. The number and
type of subgroups is related to the base symmetry group. More formally, a subgroup H of a group G is a
subset of G such that is a group with respect to the opertion ?. Two trivial examples of subgroups include
the subset containing just the identity element and the entire group G.
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In the case of symmetry patterns fixing a point, the group structure is either kaleidoscopic and represented
by a dihedral group Dn or gyroscopic and represented by a cyclic group Cn, where n represents the smallest
rotational unit of 360◦/n found in the pattern. These symmetry groups are associated with the regular n-sided
polygon. The group Cn consists of rotations about the origin by integer multiples of 360◦/n. The group Dn

consists of all the elements of Cn plus n equally spaced reflections through the origin. Thus, the group Cn

is a subgroup of Dn; there are typically many more subgroups, depending on the divisors of n. Given any
group, the number of elements of any its subgroups must evenly divide n, by Lagrange’s theorem [3].

Methods and Results

The power of mathematical groups is that they can be applied to many situations, not just the understanding of
symmetry. However, algebraic manipulation alone does not always translate into intuition about groups. The
goal of this work is to describe a framework for the visualizing and gaining intuition about the symmetries
possible in an overall design given a base symmetry group. Using the subgroup structure of the base symmetry
group will result in all subgroups having some integration into the overall symmetry.

Consider the group D4, the group associated with the symmetries of the square. It contains 8 elements,
thus the only possible subgroups have 1, 2, 4, or 8 elements. There is exactly one cyclic subgroup for each
of the orders 1 (the identity), 2 (identity and 180◦ rotations), and 4 (identity and rotations by 90◦, 180◦, and
270◦). Additionally, there is one dihedral subgroup of order 8 (the original group D4), two dihedral subgroups
of order 4 (the first containing both horizontal and vertical reflections; the second containing 45◦ diagonal
and −45◦ diagonal reflections), and 4 dihedral subgroups of order 2 (each containing one of the reflections
in the D2 groups plus the identity).

One can use a family of motifs to help visualize the relationships among the symmetry subgroups of
D4. If the motifs have a cohesive theme with a different motif for each subgroup in the lattice structure,
then a single resulting image will result that contains features of all possible symmetries. An example of
faces where facial features are repeated using subgroups of the base D4 symmetry is shown in Figure 1. The
features and symmetries are as follows: eyes and ears, D4; heads, C4; eyebrows, D2a; noses, D2b; hair, C2;
mustache, D1a; lower earings, D1b; mouths, D1c; moles, D1d; and neck, C1. The four axes associated with
the reflection elements of the group are shown as dotted lines.

Figure 1: Facial features drawn according to the subgroups of D4. See text for description.
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Figure 2: Facial features drawn according to the subgroups of D6. See text for description.

Similarly, one can visualize the subgroups of D6 as shown in Figure 2. The features and symmetries
are as follows: eyes and ears, D6; heads, C6; eyebrows, D3a; noses, D3b; hair, C3; mustaches, D2a; lower
earings, D2b; mouths, D2c; beard, C2; moles/tattoos/scars, D1a–D1 f ; and neck, C1.

In addition to cyclic and dihedral groups, the same concepts can be applied to wallpaper group sym-
metries. These groups cover the plane with an infinite number of horizontal and vertical translations, thus
they are infinite and will have an infinite number of subgroups. One can still gain some insight by restricting
these groups to a finite region of the plane. Associating the left and right edges as well as the top and
bottom edges using modular wrapping in the horizontal and vertical directions results in a finite group with
a finite number of subgroups. This related finite group will have similar visual characteristics to the infinite
group. An example of the wallpaper group 442 (p4) is shown in Figure 3. The resulting group contains 128
elements and 256 subgroups. The petals and center of the flowers were generated using 5 of the subgroups;
the identification of the subgroups used is left as an exercise for the reader.

Discussion

While not explicitly shown in this paper, the same concepts can be applied to frieze and soccer-ball symmetry
groups. In addition to being a design tool, this concept can be used to help students explore groups and
subgroup structures, providing insight and intuition, especially with more complex concepts such as normal
subgroups and stabilizers. A playful technique would be to construct cards or a game board where one creates
certain types of symmetry.

For a general dihedral group, Cavior’s theorem [1] states that for n ≥ 1 the number of subgroups of Dn

is τ(n) + σ(n), where τ(n) is the number of positive divisors of n, and σ(n) is the sum of positive divisors of
n. This is because the subgroups of Dn are either cyclic or dihedral and the number of cyclic subgroups of
Dn is τ(n) and the number of dihedral subgroups of Dn is σ(n). For example, the divisors of 6 are 1, 2, 3, and
6, so τ(6) = 4 and σ(6) = 12. The complexity of the subgroup structure of Dn generally increases with n,
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Figure 3: Flowers using some of the normal subgroups of a finite version of the symmetry group 442 (p4).
See text for description.

which may require an impractically large number features to fully visualize the subgroup structure. Wallpaper
and frieze patterns with large repeats will also result in groups with very large numbers of subgroups, thus
potentially limiting the groups which can be easily explored.
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