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Abstract 

Inspired by Stanislaw Ulam's  spiral of prime numbers on a square grid,  a similar approach is used on more
mundane integer sequences, with visually surprising results. Starting from single integer multiples displayed on
both square and hexagonal grids, which give rise to visually interesting patterns for every positive integer, a
simple parameterized indexing algorithm is then used to create a profusion of patterns “in between” the integer
multiple ones. This work can serve as the basis for artistic images and animations, and is presented at a level that
should be accessible, and perhaps inspirational, to a wide range of STEAM students.

Inspiration

Some  of  the  first  computer  graphics  were  created by the  mathematician Stanislaw Ulam.  Using the
Maniac II  computer  at  Los Alamos  Scientific  Laboratory in  the  1960s,  he  created a  few images  by
marking the primes on a number line curled up into a square spiral, reproducing a doodle he had made
while at a conference. He was intrigued by a “diagonal dust” that appears in such an image. Ulam and two
colleagues wrote  a  paper  about  this,  attributing the dust  to  the  known propensity of  some quadratic
equations to yield a fair number of primes [1].

While reproducing Ulam's prime spiral images for fun, and in particular while making an
animation of the sieve of Eratosthenes, I became intrigued by the patterns made just by marking
the multiples of any given integer on such a grid. Ulam's spiral, along with the multiples of 7 and
8, are shown in Figure 1.

                          (a)                                                   (b)                                                  (c)

Figure 1:  Square spiral grid patterns. a)Ulam's prime numbers spiral. b) The multiples of 7. c) The
multiples of 8.

In Figure 1b we see a sort of arch-shaped “stamp” that is repeated, with 90 degree orientation changes at
each turn of the spiral path. This is a common motif, with the details differing for each integer. Such
stamps are contained in a square that is n x n cells large, where n is the the integer whose multiples are
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displayed. Some integers, however, especially but not exclusively powers of two, give rise to a diagonal
bifurcation of the plane with each side containing a distinct pattern.

In Figure 2, marks are placed on a spiral hexagonal path. For both the square and hexagon, the points
at which marks are placed are the center points of  the tiles of square or hexagonal tessellations, with the
point with index zero at the center.

                           (a)                                                   (b)                                                  (c)

Figure 2: Hexagonal grids showing integer multiples: (a) of 2, (b) of 3, (c) of 6.

Between Mere Multiples

As visually surprising as these images of pure multiples are, it turns out they merely bracket a large
number  of  images  that,  in  a  very  specific  sense,  lie  in  between  them  (I  refer  to  these  below  as
“inbetweeners”). There are so many of these in betweeners that one can create mesmerizing animations
between any two integer multiple patterns. Unfortunately, animations cannot (yet) be included in a paper.

In the case of the multiples of some integer n we have the trivial mapping

                                                   f: X → Y, f(x) = n * x,                                                       (1)

where X is the set of integers (or indices) for every position on the integer number line, whether curled up
into a spiral or not, and Y is then the set of multiples of  n. Marks are then placed on the grid for each
value in Y.

A simple example of an in-between mapping that can generate animations is to take

                                        f: X → Y, f(x) = floor[(n + t * ε) * x],                                          (2)

where  t is a positive integer (e.g. the frame number) and ε is a positive value less than 1. The floor
function takes the result to an integer, which is required since these polygonal spirals have only discrete
positions. We can see even on the number line what gives rise to the inbetweeners.

Figure 3: Three number line markings. Top: multiples of 1. Middle: multiples of 2. Bottom: an
inbetweener with n = 1, t = 77, and ε = 0.01, yielding a 1.77 mapping.
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The bottom line in Figure 3 mixes the gaps of the 1- and 2-multiple cases because the mapped-to
value does not advance uniformly for each value of x, as in the pure multiple case, but only when
t * ε *  x in (2) yields an integer. In fact, the gaps alternate in such a way that the ratio of the
number of larger gaps to the total number of gaps approaches exactly the value of the fractional
part of t * ε  in (2) if enough marks are made.

The number line is useful for illustrating what is being done, and even suggests musical beat pattern
possibilities, but the real visual fun comes from in-between mappings displayed on a discrete spiral. The
patterns that result are very sensitive to the values of t and ε, leading to a cornucopia of alignments and
resonances as the product of these two values changes even slightly. Figures 4 and 5 show a few of these.

Figure 4:  Inbetweeners lying between the multiples of 2 and 3 as shown in Figure 2 (a) and (b).
Here, in (a) the index multiplier is  2.1, in (b) 2.4, and in (c) 2.984.

Figure 5: Inbetweeners on the square spiral. The index multipliers are (a) 8.01, (b) 8.3, (c) 9.97. Notice
that (a) is quite close to the  pure multiple of 8 pattern in Figure 1c.

Summary and Conclusions

I am interested in the artistic power of constraints. When I began exploring these patterns, I was curious
to see what might come of the constraint that marks be placed only at discrete locations on a line, rather
than marks that could slide around continuously. Two number lines, one marked with the multiples of n,
and the other with the multiples of m, obviously show different, non-superimposable, regular patterns, yet
they are just a scaling of n/m away from being superimposable. But once folded around themselves in
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some way, this is no longer the case. And when one dives in between the pure multiples, the patterns that
appear as different parts of the number line are brought into coincidence with each other is, for me, a
powerful yet simple source of surprising visual complexity.  The two-dimensional patterns amplify the
uniqueness of the one-dimensional ones, giving them a visual interest they do not possess in their linear
state.

To me this is an illustration of the beauty that hides, waiting to be discovered, even in very
simple  mathematics,  especially  when  an  experimental  and  playful  visual  approach  using
computers is included in the process. As an occasional volunteer programming instructor, I see
value in exploring relatively easy-to-code processes that can make STEAM students more aware
of the deep artistic and creative potential of computers, and thus more willing to learn the hard or
tedious bits of programming.

In this paper only a sketch of this topic has been given. I am currently using these ideas to
create  images  and  animations  where  the  marks  employ  size  changes,  overlapping,  semi-
transparency, and other techniques, as in Figure 6.

Figure 6: One frame of an animation. This frame is based on the 1-2 inbetweener at 1.74.
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