Bridges 2018 Conference Proceedings

Mobius Cellular Automata Scarves

Elisabetta A. Matsumoto', Henry Segerman? and Fabienne Serriere’

'School of Physics, Georgia Institute of Technology, Atlanta, USA; sabetta@gatech.edu
2Department of Mathematics, Oklahoma State University, Stillwater, USA; henry @segerman.org
3KnitYak, Seattle, USA; fabienne @fabienne.us

Abstract

In 2015, the third author launched a successful Kickstarter campaign to fund the purchase of an industrial knitting
machine. The Kickstarter rewards were scarves, each procedurally knitted in a unique two-colour pattern: the output
of a elementary cellular automaton. The scarves are double knit (double bed jacquard in machine knitting parlance),
meaning that the scarf has two layers of different colours, that swap positions back and forth to produce the pattern
on the scarf. This implies that the pattern on the back side of the scarf is the colour reverse of the pattern on the front
side. A corresponding “inverse” elementary cellular automaton produces the pattern on the back. We wondered if it
would be possible to produce a Mobius strip scarf, in which the front becomes the back whilst seamlessly continuing
the development of a single elementary cellular automaton. This paper describes our discoveries.

Elementary Cellular Automata

An elementary cellular automaton [1] is a one-dimensional cellular automaton with two states, for which
the state clf’“ of a cell in position i at generation n + 1 is determined by c}' |, ¢} and ¢, in the previous
generation n. There are eight possible states of the three consecutive cells that determine the state of the
middle cell in the next generation, so there are 28 = 256 possible elementary cellular automata (“rules”).
These are numbered by reading the eight output bits as a binary number. See Figure 1. The rules act on

binary strings, which in this paper are assumed to be cyclic, avoiding special cases at the ends of a string.

Figure 1: The eight possible states of three consecutive cells determine the state of the middle cell in the
next generation. Two rules are shown here. The first is numbered as 01101001 in base 2, which is
105 in base 10. The second is numbered as 10010110 in base 2, which is 150 in base 10.

The Scarf Inverse of a Cellular Automaton

In double knitting, two colours of yarn are used, each colour
making a planar knitted surface, one on the front of the piece
(eg. black) and one on the back (eg. white). Colour work
in double knitting exchanges stitches between the back surface
and the front surface, swapping the two colours. Therefore, if
we see a binary string in a row of double knitting, the opposite
side of the work will show that binary string both reversed and

with colours interchanged. See Figure 2. This motivates the
Figure 2: Front and back of double knit. following definitions:

<

TsxC€LCL

v
v
v
v
v
v
v
v
v

523


mailto:sabetta@gatech.edu
mailto:henry@segerman.org
mailto:fabienne@fabienne.us

Matsumoto, Segerman and Serriere

The mirror of a binary string is the result of reversing the string. For example, 01101 becomes 10110.
The complement of a binary string is the result of exchanging all Os and 1s, which we denote by a bar. For
example, 01101 = 10010. The combination of these two operations produces the mirrored complement of a
string, which we call the scarf inverse, and denote with a tilde. So, for example, 01101 = 01001. If we view
a row of stitches of a double knit scarf as a binary string, then applying the scarf inverse results in the binary
string for the other side of the same row of stitches.

Given a scarf whose subsequent rows are generated

by an elementary cellular automaton, A, one can ask if %
there is a cellular automaton, A* say, that generates the
subsequent rows of the other side of the scarf. That
is, is there a rule A* so that for every binary string s,
A(s) = A*(5)? The answer is yes: A is a map from the
eight length three input strings to {0, 1}. For each such
length three input string s, we define A*(s) = A (s).
This produces the desired behaviour. We call A* the
scarf inverse of A.

We are interested in rules with the property that
A = A*, since then the same rule simultaneously runs on
“both sides” of a Mobius strip scarf. There are 16 such
rules, whose numbers can be generated as the binary
strings achd%, for a, b,c,d € {0, 1}. In decimal, the
possibilities are 23, 29, 51, 57, 71, 77, 99, 105, 150,
156, 178, 184, 198, 204, 226, and 232. See Figure
3 for sample runs of these rules, all starting from the
same randomly chosen seed. Most of the rules produce
uninteresting patterns. Thankfully however, we find two rules, 105 and 150, shown in Figure 1, that are both
invariant under the scarf inverse operation, and give interesting patterns. We focus on these rules.

v. ll‘

Figure 3: 16 scarf inverse invariant rules with the
same random seed.

Finding a Cycle

Having determined the rules we want to use, we next need to actually produce a pattern. We must produce
a binary string corresponding to a row of stitches in the scarf, that when acted on by our rule, produces a
sequence of strings that eventually returns back to the scarf inverse of the initial binary string (so that we
can stitch the end of the scarf to the start and produce a Mobius strip). Moreover, in order to produce a
reasonable scarf, we need each row to be around 100 stitches wide and the cycle length to be around 1000
rows. Initially, this seems to be an impossible problem. Given a random 100 digit binary string, it would
seem to be extremely improbable that after applying a rule around 1000 times, we would arrive at its scarf
inverse. We are guaranteed to eventually fall into a loop, since there are a finite number of possible binary
strings, but there is no guarantee that such a loop would contain any pairs of scarf inverse strings. Moreover,
the search space of possible initial binary strings is computationally intractable, so we cannot directly brute
force the problem. Our solution is to require that our initial binary string is itself invariant under the scarf
inverse operation. This implies that under our rule, each subsequent string is also invariant under the scarf
inverse operation. Now we need only find a loop. It is perhaps a little disappointing that such a loop could be
stitched as either a Mobius strip or an annulus, both respecting the cellular automaton. This also means that
there is a symmetry in each row that is not essential to the concept, although invariance of each row under
the scarf inverse is not immediately visually obvious. In any case, our method has the immense advantage
that it works!

524



Méabius Cellular Automata Scarves

Figure 4: Scarf patterns.

Our algorithm to try to find a loop is as follows. We take as input a
scarf width, which is another name for the length of the binary strings we
will use. We require that this is an even number, since all of our strings
are invariant under the scarf inverse operation. We start with an initial
random binary string, formed by taking a random string of half the scarf
width, and appending a mirrored complementary copy. That is, given any
binary string s, we form the string s, which is scarf inverse invariant.
Next, we generate a sequence of some large number of iterations of our
cellular automaton rule, applied to ss. To avoid any initial tail, we throw
away an initial segment of the list, of length randomly chosen between
1,000 and 2,000. We then take the next string in the sequence, and search
the remainder of the list for a repeat of this string.

Results

We ran the above algorithm for all different even scarf widths from 70
through 130. As far as we can tell, in the vast majority of cases, if we are
able to find a loop then we find the exact same loop every time we run the
algorithm. That is, for randomly chosen initial binary strings, we seem
to fall into the same loop for a given scarf width. Moreover, the loops
for rules 105 and 150 seem to have the same cycle lengths. These cycle
lengths are listed in the table below. For each scarf width, if we could
not find a loop in 33,600,000 iterations (slightly larger than 2%), this is
indicated by a dash in the table below. These cases must eventually loop,
but we don’t know when.

A ks
H i K NSRS S f ¥ 2

scarf width | 70 7 74 76 78 80 82 84
cyclelength | 23 -2 56 58254 2MT—4 2032 48 2MT-2 284
scarf width | 86 88 90 92 94 96 98
cyclelength | 28 -2 288 203_2 2B3_4 2% _2 16 22-2

scarf width | 100 102 104 106 108 110 112
cyclelength | 2124 29-2 168 2T 4 22124 112

scarf width | 114 116 118 120 122 124 126 128 130
cyclelength | 210-2 216 _4 120 - 124 126 64 126

When seeded with a highly symmetric initial binary string, such as
half zeroes and half ones, we can fall into different loops from the ones
we get from randomly chosen seeds, and so the cycle length changes for
several of the seed lengths. For initial binary strings 00...0011...11
and 11...1100...00, the changes to the cycle length occur in two ways:
Either the cycle length compared with the random seed is halved for both
rules — this is the case for widths 72, 76, 80, 84, 88, 92, 100, 104, 108,
112, 120, and 124; or the cycle length is only halved for rule 150 — this
is the case for widths 70, 78, 82, 86, 90, 102, 114, 126, and 130. For an
initial binary string 0101 ...0101, we immediately get a checkerboard
pattern for rule 105 and alternating vertical stripes for rule 150, so for this
initial string the cycle lengths are all 2 for rule 105 and 1 for rule 150.

525



Matsumoto, Segerman and Serriere

We can explain why rules 105 and 150 generally have the same
cycle lengths: Let us write rule 105 as A and rule 150 as B. By
inspecting Figure 1, we can see that for any input string s, B(s) =
A(s) = A (5), 50 A(s) = B (5). Then A(A(s)) = B (A(s)) = B(B(5)).
So the sequences of binary strings generated by A and B starting from
the same initial string are complementary at odd iterations and identical
at even iterations. The cycle lengths can therefore only differ if one
happens to hit a cycle at an odd iteration, while the other has reached
the complement of its initial string. In this unlikely event, the cycle
lengths differ by a factor of two.

There are however a number of other questions that arise from
looking at this data that we do not have answers to. Why does there
seem to be only one long loop for each scarf width? Why do many of
the cycle lengths seem to be just under a power of two? We also noticed
that some of the cycle lengths are the same as the scarf width. Again

Figure 5: Scarf coming off the ~ we have no explanation.
machine. These questions aside, we obtained some good candidate designs,
with cycle lengths near 1000. We chose the two designs with scarf width 114, cycle length 2'0 — 2 = 1022.
These are shown in Figure 4 (rule 105 on the left and 150 on the right).

Knitted scarves typically have an aspect ratio of approximately 1/6, with the width about a third of a
meter and the length around two meters. The gauge of the Stoll CMS 530 HP 7.2 multigauge industrial
flat knitting machine used for our double knitted scarves after being steamed is 51 stitches per 10 cm wide
(columns), 54 stitches per 10 cm tall (rows), with tension on the Stoll knitting machine set to 13.5 using
2/18 USA yarn count gauge merino yarn (approximately equivalent to 2/24nm gauge). Note that knitted
stitches aren’t square. Scarves produced by this knitting machine come out as planar fabric (Figure 5). In
order to make Mobius (or annular) scarves one needs to graft the top and bottom of the scarf together, using
a technique called Kitchenering, which uses a needle and yarn to create the topology of the knitted stitch
between two different pieces of fabric. The left and center images in Figure 6 are renders of what the finished
garments will look like after they have been grafted together. A of the photo finished rule 150 scarf is shown
to the right.

(a) Render of Mobius scarf rule 105. (b) Render of Mobius scarf rule 150. (¢) Knitted Mébius scarf rule 150.
Figure 6: Mobius scarves.

References

[1] Stephen Wolfram. A New Kind of Science. Wolfram Media Inc., Champaign, IL, USA, 2002.

526



