
A Family of Fern-like Ternary Complex Trees
Bernat Espigulé

bernat@espigule.com

Abstract
A ternary complex tree related to the golden ratio is used to show how the theory of complex trees works. We use the
topological set of this tree to obtain a parametric family of trees in one complex variable. Even though some real ferns
and leaves are reminiscent to elements of our family of study, here we only consider the underlying mathematics.
We provide esthetically appealing examples and a map of the unstable set M for this family. Moreover we show that
some elements found in the boundary of the unstable set M possess interesting algebraic properties, and we explain
how to compute the Hausdorff dimension and the shortest path of self-similar sets described by trees found outside
the interior of the unstable set M.

Introduction

A ternary complex tree TA is a fractal tree with all of its branch-nodes encoded by the geometric map φ
introduced in [4] that sends any word w composed of m complex-valued letters w1,w2, . . . ,wm taken from a
ternary alphabet A = {c1, c2, c3} to a complex point φ(w) ∈ C in the following geometric series style

φ(w) := 1 + w1 + w1w2 + · · · + w1w2 . . .wm.

If a word w = w1w2w3 . . .wm has a finite sequence of letters, w1,w2, . . . ,wm, then the point φ(w) is called a
node of the complex tree TA. But if a word w = w1w2w3 . . .wk . . . has infinite length, then φ(w) is called a
tip point of the complex tree TA and we express it as an infinite sum

φ(w) = 1 + w1 + w1w2 + · · · + w1w2 . . .wk + · · · =
∞󳕗
k=0

w1w2 . . .wk =

∞󳕗
k=0

w |k (1)

where each summand w |k = w1w2 . . .wk is assumed to be the complex multiplication of the individual letters
of the word w pruned up to its kth letter. For k = 0, we have that w |0 = w0 = e0 where e0 is the empty string
with assigned value equal to 1. The node φ(e0) = 1 is called the root of the complex tree where the three
first-level nodes, φ(c1) = 1 + c1, φ(c2) = 1 + c2, and φ(c3) = 1 + c3, sprout from, see figure 1.

φ(e0)

φ(c1)

φ(c2)

φ(c3)

Figure 1: Ternary complex tree TA = T{c1, c2, c3} = T{0.4 + i0.1, 0.2 + i0.3, 0.2 − i0.1}.
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By imposing a color code, {1 → c1, 2 → c2, 3 → c3}, a word u = u1u2 . . . um of a node φ(u) can be retrieved
by reading the color sequence of the branch-path that goes from the root φ(e0) to the desired node φ(u). From
now on, letters wk ∈ {c1, c2, c3} found in words will be replaced by the numeric symbols {1, 2, 3} to facilitate
reading, for example c2c3c1c1 = 2311. Infinite sequence of letters w1,w2, . . . ,wk, . . . ∈ A that are eventually
periodic have their associated tip point φ(w) reduced to algebraic expressions in terms of c1, c2, c3 ∈ A. For
example, tip points labeled in figure 2 get reduced to the following algebraic expressions:

φ(1) = φ(1111 . . . ) = 1 + c1 + c2
1 + c3

1 + · · · =
∞󳕗
k=0

ck1 =
1

1 − c1
,

φ(231) = 1 + c2 + c2c3 + c2c3c1 + c2c3c2
1 + · · · = 1 + c2 + c2c3

∞󳕗
k=0

ck1 = 1 + c2 +
c2c3

1 − c1
,

φ(1221) = 1 + c1 + c1c2 +
c1c2

2

1 − c1
, φ(321) = 1 + c3 +

c3c2
1 − c1

, φ(1331) = 1 + c1 + c1c3 +
c1c3

2

1 − c1
.

✁
✁
✁

❆
❆
❆

φ(1)

φ(231) = φ(1221)

φ(321) = φ(1331)

Figure 2: Complex tree T{c1,c2,c3 } = T{(−1 +
√

5)/2, (−2 +
√

5 + i
󰁳

5 − 2
√

5)/2, (−2 +
√

5 − i
󰁳

5 − 2
√

5)/2}.
The scaling factors for the first-level pieces are |c1 | = 1/τ and |c2 | = |c3 | = 1/τ2 respectively,

where τ is the golden ratio τ = 1.6180 . . . . This tree is mirror-symmetric, c1 = 1/τ and c2 = c∗3.

The set of all tip points φ(w) is called the tipset FA of the complex tree TA. A tipset FA is a self-similar set

FA = f1(FA) ∪ f2(FA) ∪ f3(FA) (2)

generated by an iterated function system composed of three contractive mappings f1, f2, and f3 defined as

f1(z) = 1 + c1z , f2(z) = 1 + c2z , and f3(z) = 1 + c3z (3)

where {c1, c2, c3} = A and 0 < |c1 |, |c2 |, |c3 | < 1. The self-similar nature of the tipset FA implies that the
tip-to-tip intersections between the three first-level pieces f1(FA), f2(FA), and f3(FA) is the only piece of
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information needed for capturing the topological structure of a tipset FA. We define the topological set QA

of a complex tree TA as the following set of tip-to-tip equivalence relations

QA := {a ∼ b : φ(a) = φ(b) = x ∈ fj(FA) ∩ fk(FA) where j = a1 󲧰 b1 = k}. (4)

For example, the topological set of ternary trees in figures 1-2 is QA = ∅ and QA = {231 ∼ 1221, 321 ∼ 1331}
respectively since the tipset of the first one is topologically homeomorphic to a Cantor set, and for the second
one, the intersection of first-level pieces f1(FA) ∩ f2(FA) = {x} and f1(FA) ∩ f3(FA) = {x ′} is a pair of
singletons uniquely encoded by x = φ(231) = φ(1221) and x ′ = φ(321) = φ(1331).

TA(0.7 + i0.2) TA(0.66 + i0.1)

TA(0.82 + i0.1) TA(0.82)

Figure 3: Topologically homeomorphic tipsets of stable trees TA(z) from the family obtained in (5).

A Family of Fern-Like Connected Self-Similar Sets

The method introduced in [4] to obtain families of connected self-similar sets from topological sets QA of
certain complex trees TA can be applied for the tree depicted in figure 2. If we consider the topological set
QA = {231 ∼ 1221, 321 ∼ 1331} as a system of two equations {φ(231) = φ(1221), φ(321) = φ(1331)} with
letters c1, c2, c3 ∈ A set as three unknown complex variables, then the system admits a parametric solution in
one complex variable with c1 = z as unknown:
󰀫
φ(231) = φ(1221)
φ(321) = φ(1331)

=

󰀫
c2 +

c2c3
1−z = z + zc2 +

zc2
2

1−z
c3 +

c3c2
1−z = z + zc3 +

zc3
2

1−z
⇒

󰀻󰁁󰁁󰀿
󰁁󰁁󰀽

c2(z) := 1−z−z2+z3+
√

1−2z−z2−z4+2z5+z6

2(z+z2)
c3(z) := 2 + 1

z + z − c2(z)
(5)

This one-parameter family TA(z) = T{z, c2(z), c3(z)} is defined for R := {z ∈ C : 0 < |z |, |c2(z)|, |c3(z)| < 1}.
Notice that by construction we have that {231 ∼ 1221, 321 ∼ 1331} ⊆ QA(z) for all z ∈ R, i.e. all tipsets
FA(z) are connected. Therefore the connectivity locus for this family of self-similar sets is the entire region R.
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The Unstable Set M
A much more informative map about the topological structure of the family is given by what we call the
unstable set defined as M := {z ∈ R : QA(z) 󲧰 {231 ∼ 1221, 321 ∼ 1331}}. The complement of M is
the stable set K = R\M entirely composed of points z with tipsets FA(z) topologically homeomorphic to
FA(1/τ) = FA(−1/2 +

√
5/2) shown in figure 2, i.e. QA(z) = {231 ∼ 1221, 321 ∼ 1331}. Such tipsets

are structurally stable because we can always find an 󰂃-neighborhood of z ∈ K with constant topological
set QA(z + 󰂃) = QA(z) = {231 ∼ 1221, 321 ∼ 1331}. On the other hand, for z ∈ M, such neighborhoods
do not exist and the tipsets FA(z) are structurally unstable, any perturbation away from z will destroy the
original topological set QA(z) 󲧰 QA(z + 󰂃). Examples of stable and unstable trees TA(z) are shown in
figure 3 and figures 4-5 respectively.

Figure 4: Unstable tree TA(1/2) = T{1/2, 1/4 + i
√

15/12, 1/4 − i
√

15/12} which is also mirror-symmetric.

A direct way to determine points z in the unstable setM with the aid of a computer software like Mathematica
consists in imposing an extra tip-to-tip equivalence relation a ∼ b 󲧿 {231 ∼ 1221, 321 ∼ 1331} and then
solving the equality φ(a) = φ(b)with complex-valued letters c1, c2, and c3 replaced by those of the parametric
alphabet A(z) = {1 → z, 2 → c2(z), 3 → c3(z)}. For example, with 23131 ∼ 12221 we get z = 1/2 since
φ(23131) = φ(12221) gets reduced into:

1 + c2(z) + c2(z)c3(z)(1 + z + zc3(z)/(1 − z)) = 1 + z + zc2(z) + zc2(z)2 + zc2(z)2/(1 − z)

0 = (2z − 1)
󰀓
−1 + 2z + 2z3 + z4 + (z − 1)

󰁳
1 − 2z − z2 − z4 + 2z5 + z6

󰀔
/(z + z2).

Therefore the mirror-symmetric tree TA(1/2) = T{1/2, 1/4 + i
√

15/12, 1/4 − i
√

15/12} shown in figure 4 is
unstable. Notice that the topological set of TA(1/2) has a numerable infinite number of tip-to-tip equivalence
relations, QA(1/2) = {231 ∼ 1221, 321 ∼ 1331, 23131 ∼ 12221, 32121 ∼ 13331, . . . }, but only one extra
equivalence relation was actually needed to compute z0 = 1/2. By automating this process of computing
points z0 ∈ M from extra equivalence relations a ∼ b with a1 󲧰 b1 we can approximate the unstable set M,
see figure 5. This brute-force method to compute M is exact but rather slow. A big chunk of the unstable
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set M is better obtained by an analytic method considered in [4] which is based on the Hausdorff dimension
and the open set condition. For our family of study we have that the analytic region M2 ⊂ M is given by

M2 := {z ∈ R : 1 < |z |2 + |c2(z)|2 + |c3(z)|2}, (6)

see the gray region M2 in figure 5. For z 󲧿M the self-similar tipset FA(z) satisfies the open set condition and
their Hausdorff dimension coincides with the similarity dimension α which is the positive number satisfying

|z |α + |c2(z)|α + |c3(z)|α = 1. (7)

If z ∈ M, then the Hausdorff dimension of a tipset FA(z) is not easy to compute in general and eq. (7) does
not apply except in rare occasions when there are no overlaps and the pieces just-touch. This is precisely
what happens for z ∈ ∂M where the open set condition still applies.

Figure 5: The unstable set M with six tipsets of unstable trees TA(z) found in the boundary ∂M.

Another remarkable property of the boundary ∂M is that extreme points penetrating into the stable set
turn out to be interesting algebraic numbers, see the pair of examples in figure 6 with Hausdorff dimension
α ≈ 1.763 and α ≈ 1.769 respectively.

The Shortest Path from φ(21) to φ(31)
Christoph Bandt considered the notion of geodesics in self-similar sets, his method reported in [1] can be
adapted to tipsets FA(z) for parameters z in the stable setK our family of study. The shortest path C∪D ⊂ FA(z)
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Figure 6: Tipsets FA(z) and FA(z′) where z ≈ 0.814 + i0.146 is a root of 1 − z2 − z3 − z4 + z5 + z6 + z7

and z′ ≈ 0.843 + i0.126 is a root of 1 − z2 − z4 − z5 + z6 + z7 + z9. Both points lie in the
boundary ∂M with extra tip-to-tip equivalence relations 211131 ∼ 121 and 2111131 ∼ 121.

C

D

φ(21)
φ(1)

φ(31)

f2(D)
f1( f2(C)) f1(C)

f1(D)

f1( f3(D))
f3(C)

Figure 7: Shortest path C ∪ D ⊂ FA(z) that goes from the tip point φ(21) to the tip point φ(31).
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from the tip point φ(21) to φ(31) that goes through φ(1) ∈ C ∩ D is given by C = f2(D) ∪ f1( f2(C)) ∪ f1(C)
and D = f1(D) ∪ f1( f3(D)) ∪ f3(C) where C and D are the curves depicted in figure 7.

Figure 8: Shortest paths C ∪ D ⊂ FA(z) for z ∈ (1 −
√

2, 1) with the 3D surface generated by them.

When we move the parameter z along the real line starting at z = 1 −
√

2, trees TA(z) are mirror-symmetric
and the fractal dimension of C ∪ D starts to increase, see figure 8. As a final application, consider stacking
these curves C ∪ D at heights given by the parameter z ∈ (1 −

√
2, 1), with φ(21) and φ(31) fixed at the same

position. The result is the three-dimensional surface depicted in figure 8.

Figure 9: Five-fold rotational symmetry of the golden ternary tree TA(1/τ) shown in figure 2.
Images reproduced from the author’s post published in the Wolfram Blog [3].

Summary and Conclusions

The family considered in this paper represents a tiny sample of what is out there. The space of possible
parametric families of tipset connected n-ary complex trees is incredibly vast and rich. Nonetheless we
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believe that the family covered here ranks hight in this space and it deserved to be considered apart. The
theoretical basis set in [4] provides a unified approach to previously known results on symmetric fractal trees
and self-similar sets in general, see [1] [2] and references within.
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